Sort:
Open Access Research Article Issue
The impact of earlier flood recession on metacommunity diversity of wintering waterbirds at shallow lakes in the middle and lower Yangtze River floodplain
Avian Research 2023, 14 (2): 100102
Published: 24 April 2023
Downloads:7

The hydrological regime in wetlands plays an important role in the process of wintering waterbird metacommunity assemblage. However, increasing frequency of extreme climate and the intensification of human activities, such as the construction of sluices and dams, have resulted in frequently abnormal hydrological regime in the middle and lower Yangtze River floodplain. In recent years, earlier flood recession has become one of the main hydrological problems faced in the shallow lakes, having a great impact on wetland biodiversity. It is necessary to understand the impact of earlier flood recession on waterbirds, an indicator of wetland biodiversity, and the metacommunity concept is helpful to elucidate the underlying mechanism involved in the processes of assemblage by waterbird communities. In this study, we surveyed the wintering waterbirds at three sub-lakes of Caizi Lakes during 2019–2020 and 2020–2021 and compared the richness, abundance, alpha and beta diversity of waterbirds in and among local metacommunities under earlier flood recession and normal hydrological regime. The results showed that the earlier flood recession reduced the species richness in the early stage and abundance in the late stage, it also reduced the Shannon–Wiener index in the early stage and increased the dissimilarity between and within waterbird metacommunities in the late stage. The partition of beta diversity showed that the turnover component played a major role in the process of waterbird metacommunity assemblage. It was found that the earlier flood recession reduced the richness, abundance in different stages of flood recession, which also increased the turnover of waterbirds. Metacommunities with high habitat heterogeneity had better resistance to abnormal hydrological regime, which resulted in high dissimilarity between and within metacommunities. The results of this study provide important information for waterbird conservation and water level management at shallow lakes in the middle and lower Yangtze River floodplain.

Open Access Research Article Issue
Flexible nest site selection of the endangered Oriental Storks (Ciconia boyciana): Trade-off from adaptive strategies
Avian Research 2023, 14 (2): 100088
Published: 16 February 2023
Downloads:5

Nest site selection is a vital component of bird reproduction success, and an adaptive behavior conducted to decrease nest predation risk with avoiding external disturbances. Understanding patterns of nest site selection can provide insights into how species adapt to changes in their habitat and has important conservation implications. In this study, we used microhabitat variables and multi-scale data with a field survey of nest occurrence to determine nest site selection patterns and adaptive strategies of the breeding Oriental Storks (Ciconia boyciana) in different nest areas. Results demonstrate that the nest site microhabitat characteristics of the breeding Oriental Storks significantly differed among the three nesting areas, and nest height was higher in the middle and lower Yangtze River floodplain than in the Northeast China and Bohai Bay nest areas. The food resources and intensity of human disturbance had the greatest effects on the nest site selection of the breeding Oriental Storks. The intensity of human disturbance was positively correlated with the nest height of the breeding Oriental Storks in Bohai Bay and the middle and lower Yangtze River floodplain; however, nest height decreased with the abundance of food resources in the Northeast China nest area. Our findings indicate that the nest site selection patterns of Oriental Storks showed flexible adaptive strategies. In safer environments, nests were lower and closer to food resources, which allows parent storks to invest more in the nestlings. However, in areas where human activity was intense, nests were higher to ensure the safety of their offspring. Some measures that could be taken to improve the breeding habitat of Oriental Storks include increasing the percentage of wetland areas in nesting areas to enhance food resources availability and setting artificial nests at suitable heights in potential nesting grounds to encourage nesting. Finally, the establishment of soft barriers around the nesting areas could increase the safety of nests.

Open Access Research Issue
Effects of foraging site distances on the intestinal bacterial community compositions of the sympatric wintering Hooded Crane (Grus monacha) and Domestic Duck (Anas platyrhynchos domesticus)
Avian Research 2021, 12 (1): 20
Published: 03 May 2021
Downloads:22
Background

The composition of intestinal microflora in animals is affected by cross-species transmission. In a nature reserve, the foraging sites of waterbirds are relatively fixed, but frequently close to residential areas and can also be visited by domestic fowls. It is easy to result in the trans-species-flock dispersal of gut microbes between the wild birds and domestic fowls. The effects of the variable foraging site distances on the gut microbe structures of the waterbirds and the sympatric domestic fowls are currently unclear, and further research is required to evaluate the impacts of geographic location on cross-infection.

Methods

Illumina high-throughput sequencing and bioinformatics analysis software were utilized to compare and analyze the composition of gut microbes from the fecal samples of Hooded Cranes (HC; Grus monacha) and two groups of Domestic Ducks (Anas platyrhynchos domesticus) that foraged at 1 km (ducks in near areas, D-N), and 4 km (ducks in far areas, D-F) away from the habitats of the Hooded Cranes at Shengjin Lake, China.

Results

The results showed that there were significant differences in the alpha-diversity of the gut bacteria in the HC, D-N, and D-F samples under the interspecific distance factor. The dominant bacterial phyla, Cyanobacteria and Proteobacteria, showed correlations with distance for each host. The D-N group had more diverse intestinal flora than the D-F, as they were physically closer to the HC and had more indirect contact and cross-transmission of their gut microbes. More potentially pathogenic bacterial sequences, and Operational Taxonomic Units (OTUs) were found in the D-N than in HC and D-F.

Conclusions

Hooded Cranes and the Domestic Duck populations at variable distances from the cranes showed significant differences in their intestinal bacteria and potentially pathogenic bacteria. The closer the foraging sites were, the easier the intestinal flora spread across species. The results provide a basis for determining the safe distance between wild birds and domestic fowls in a nature reserve.

Open Access Research Issue
Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus)
Avian Research 2020, 11 (1): 13
Published: 30 April 2020
Downloads:18
Background

Gut microbiota play crucial roles in host health. Wild birds and domestic poultry often occupy sympatric habitats, which facilitate the mutual transmission of intestinal microbes. However, the distinct intestinal microbial communities between sympatric wild birds and poultry remain unknown. At present, the risk of interspecies transmission of pathogenic bacteria between wild and domestic host birds is also a research hotspot.

Methods

This study compared the intestinal bacterial communities of the overwintering Hooded Crane (Grus monacha) and the Domestic Goose (Anser anser domesticus) at Shengjin Lake, China, using Illumina high-throughput sequencing technology (Mi-Seq platform).

Results

Our results revealed that Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes and Chloroflexi were the dominant bacterial phyla in both hosts. The gut bacterial community composition differed significantly between sympatric Hooded Cranes and Domestic Geese. However, the hosts exhibited little variation in gut bacterial alpha-diversity. The relative abundance of Firmicutes was significantly higher in the guts of the Hooded Cranes, while the relative abundances of Actinobacteria, Proteobacteria, Bacteroidete and Chloroflexi were significantly higher in guts of Domestic Geese. Moreover, a total of 132 potential pathogenic operational taxonomic units (OTUs) were detected in guts of Hooded Cranes and Domestic Geese, and 13 pathogenic OTUs (9.8%) were found in both host guts. Pathogenic bacterial community composition and diversity differed significantly between hosts.

Conclusions

The results showed that the gut bacterial community composition differs significantly between sympatric Hooded Cranes and Domestic Geese. In addition, potential pathogens were detected in the guts of both Hooded Cranes and Domestic Geese, with 13 pathogenic OTUs overlapping between the two hosts, suggesting that more attention should be paid to wild birds and poultry that might increase the risk of disease transmission in conspecifics and other mixed species.

Open Access Research Issue
Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: diet shifts and habitat use
Avian Research 2020, 11 (1): 3
Published: 05 February 2020
Downloads:51
Background

The habitat use and foraging behaviors of waterbirds are closely related to the distribution and abundance of their food resources. Reductions in food supply can cause waterbirds to shift their habitats and adjust their foraging behaviors to meet their nutritional requirements and increase fitness. Seasonal withdraw of the water levels in the river-connected lakes in the middle and lower Yangtze River floodplain provides abundant food resources for the wintering Greater White-fronted Goose (Anser albifrons). Sedge (Carex) meadows are critical foraging habitats for herbivorous waterbirds in the hydro-fluctuation belt, which changes with hydrological conditions and climate. This study aimed to examine the behavioral responses of the Greater White-fronted Goose to temporal- spatial changes of food availability in the Sedge meadows.

Methods

Fields surveys were carried out at Shengjin Lake from November 2017 to April 2018. According to the phenology of Shengjin Lake, we divided the wintering season into three periods. The food density, minimum temperature, food items, grass height, and number of foraging geese were surveyed, and samples of the foraging behavior were collected. We analyzed the relationship of the foraging behavior and habitat use relative to the food resources, using correlation and linear regression analyses.

Results

Along with the temporal-spatial variation and exploitation of food resources, the food abundance and items varied widely among the foraging sites. Over the whole wintering period, the foraging habitat with the highest utilization rate was the meadows, followed by the paddy fields, and then mudflats. Furthermore, the utilization of the meadows showed a bimodal distribution trend, while the paddy fields showed a unimodal trend, and a decreasing trend was seen in the mudflats over the whole wintering period. The results of the generalized linear model showed that the foraging rate was related to the food density and grass height, with a linearly increasing trend during the winter.

Conclusions

With the change of food resources in the three habitats, the habitats used by the Greater White-fronted Geese shifted from meadows in the hydro-fluctuation belt to the paddy fields, and then back to the meadows. The time budget for foraging activities increased correspondingly, and there was an increase in the foraging rate to compensate for food shortages.

Open Access Research Issue
Shifts in foraging behavior of wintering Hooded Cranes (Grus monacha) in three different habitats at Shengjin Lake, China
Avian Research 2016, 7 (1): 13
Published: 17 August 2016
Downloads:15
Background

Wetland loss and degradation result in a reduction in the availability and quality of food for wintering waterbirds. Birds normally modify their foraging behavior to adapt to variations in food availability. In this study, we compared shifts in foraging behavior of Hooded Cranes (Grus monacha) in three different habitats at Shengjin Lake, China to understand the response of these cranes to changes in habitat.

Methods

We investigated the food density and foraging behavior of Hooded Cranes in Shengjin Lake National Nature Reserve from November 2014 to April 2015. We used regression equations to describe the changes in food density. A total of 397 behavioral observations were used in the analyses of their foraging efforts. We fitted a candidate set of generalized mixed linear models to analyze the relationship of foraging efforts and food density. We used a method of information theory to guide the selection of the model and Akaike's Information Criterion to calculate the value of each model. The relationship between food density, disturbances and foraging behavior was illustrated using a generalized linear model.

Results

Along with the temporal variation and exploitation of food biomass, the food density varied widely among foraging sites. During the early winter period, foraging efforts were more pronounced in the paddy fields and meadows but not significantly different among the three habitats. The cranes spent more foraging effort in the paddy fields and meadows during the middle stage and in the meadows and mudflats during the late winter. The results of the generalized linear model showed that food density and disturbances had different effects on the rate of foraging success during the winter, while the effect of foraging effort was not significant. Furthermore, the rate of feeding success was markedly affected by disturbances in the paddy fields. The combined action of food density and disturbances had a significant effect on the rate of foraging success in the meadows, while the effect of foraging effort was also not significant in three habitats.

Conclusions

Changes in foraging behavior were significant in three habitats, which were affected by food density and disturbances. The rate of foraging success increased in the habitat with low food density and low disturbances to increase the foraging efficiency in the lake. With abundant food and a high level of disturbance, the rate of foraging success decreased to ensure more secure access to food.

Open Access Research Issue
The effects of food abundance and disturbance on foraging flock patterns of the wintering Hooded Crane (Grus monacha)
Avian Research 2015, 6 (1): 15
Published: 12 August 2015
Downloads:21
Background

Food abundance and availability affect flock patterns of foraging birds. Cost and risk tradeoffs are especially critical for flocks of wintering waterbirds foraging in lake wetlands. Waterbirds losing suitable habitats face insufficient food supplies and high levels of disturbance, affecting their foraging activities. Our Objective was to study the effects of food abundance and disturbances on flock size and the structure of Hooded Crane flocks wintering at Shengjin Lake and, as well, to understand the response of wintering waterbirds to habitat degradation for future management decisions and protection of the population.

Methods

We investigated food abundance, disturbances and flock foraging activities of the wintering Hooded Crane in several foraging habitats of Shengjin Lake from November 2013 to April 2014. Flock size and structure were observed by scan sampling. Data on food abundance and disturbances were collected by sampling. Flock size and structure were compared among three wintering stages. The relationship between food resources, disturbances and flock size were illustrated using a generalized linear model.

Results

In the early and middle wintering periods, the Hooded Crane used paddy fields as its major foraging habitat, where the number of foraging birds and flocks were the highest. During the late period, the cranes took to meadows as their major foraging habitat. The variation among foraging flock was mainly embodied in the size of the flocks, while the age composition of these flocks did not change perceptibly. Family flocks were notably different from flock groups in size and age composition. The Results of a generalized linear model showed that the food abundance had a marked effect on foraging flock size and age composition, while disturbances had a significant effect only on flock size. From our analysis, it appeared that the combined effect of the two variables was significant on the size of the foraging flock, but had less impact on age composition.

Conclusions

Food abundance and disturbances affected the flock size of the Hooded Crane. With abundant food and high disturbances, flock sizes increased owing to cooperation in foraging. To avoid competition and maximize foraging benefits, flock size reduces with an abundance of food but low disturbance. By trading off risks and costs, the cranes showed flexible flock distributions and a variety of foraging strategies to maximize benefits and to improve their fitness.

Open Access Research Issue
Effect of water level fluctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane (Grus monacha)
Avian Research 2015, 6 (1): 16
Published: 05 August 2015
Downloads:9
Background

The Yangtze River floodplain provides important wintering habitats for Hooded Cranes (Grus monacha) in China. Fluctuations in the water level change foraging habitat and food availability, affecting their temporal-spatial patterns of foraging activities. It is of considerable importance to investigate the effect of these fluctuations on food availability for wintering Hooded Cranes and their foraging response to these changes. Understanding their behavior patterns is beneficial in protecting the wintering crane population and restoring their wintering habitats.

Methods

A field survey of the winter behavior of cranes was carried out at Shengjin Lake from November in 2013 to April in 2014. Habitat variables, as well as the spatial distribution and behavior patterns of wintering cranes at their foraging sites during five stages of water level fluctuation were collected. Based on this data we analyzed the relationship of foraging behavior relative to water level fluctuations and habitat types.

Results

The foraging habitats used by Hooded Cranes varied at the different water level stages. As the water level decreased, the use of meadows and mudflats increased. When the water dropped to its lowest level, the use by the Hooded Crane in the mudflats reached a peak. There were statistically significant differences in time budget in the three types of habitats over the five stages of the water level. In the mudflats, the foraging behavior and maintenance behavior varied significantly with the water level, while the alert behavior showed little variation. Analysis of a generalized linear model showed that the five water level stages and three habitat types had a significant effect on foraging behavior, while the combined effect of these two variables was significant on the foraging time budget and the length of foraging activity of the Hooded Crane.

Conclusions

With the decrease in the water level, the use of mudflats by Hooded Cranes increased correspondingly. Food availability in different habitats was affected by changes in the water level. The Hooded Crane adjusted its foraging patterns and made full use of the three available types of habitat in order to acquire enough food in response to fluctuations in the water level.

Open Access Research Issue
Effects of variation in food resources on foraging habitat use by wintering Hooded Cranes (Grus monacha)
Avian Research 2015, 6 (1): 11
Published: 01 July 2015
Downloads:26
Background

The ideal habitat use of waterbirds can be considered to be fixed, but current habitat use depends on environmental conditions, especially those of food characteristics, considered crucial to their use of habitats. Understanding how waterbirds respond to variation in food availability at degraded wetland sites and change their habitat use patterns over spatial and temporal scales should direct future conservation planning. The Objectives of this study were to identify these spatial-temporal foraging habitat use patterns of Hooded Cranes (Grus monacha) and their relationship with food characteristics in the severely degraded wetlands of the Shengjin and Caizi lakes along with the Yangtze River floodplain.

Methods

We investigated the changes in food characteristics, relative abundance and density of Hooded Cranes in various habitat types across three winter periods from November 2012 to April 2013. We examined the effect of these winter periods and habitat types on the pattern of use by the cranes and explored the relationship between these patterns and food characteristics using linear regression.

Results

The food characteristics and habitat use clearly changed over spatial-temporal scales. In the early and mid-winter periods, the most abundant, accessible and frequented food resources were found in paddy fields, while in the late period the more abundant food were available in meadows, which then replaced the paddy fields. There were fewer effects of winter periods, habitat types and their interactions on habitat use patterns except for the effect of habitat types on the relative abundance, determined as a function of food abundance, but independent of food depth and sediment permeability.

Conclusions

In response to the degradation and loss of lake wetlands, the cranes shifted their habitat use patterns by making tradeoffs between food abundance and accessibility over spatial-temporal scales that facilitated their survival in the mosaic of these lake wetlands.

Open Access Research Issue
Temporal-spatial patterns of intestinal parasites of the Hooded Crane (Grus monacha) wintering in lakes of the middle and lower Yangtze River floodplain
Avian Research 2014, 5 (1): 6
Published: 20 October 2014
Downloads:6
Background

Parasites have adverse effects on the life and survival of many migratory waterbirds, especially birds on the endangered species list. Hooded Cranes are large migratory colonial waterbirds wintering in wetlands, which are prone to parasite infection, thus monitoring the diversity of parasites is important for sound wetland management and protection of this species.

Methods

From November 2012 to April 2013, we collected 821 fresh faecal samples from the three lakes (Poyang, Caizi and Shengjin Lake) in the lower and middle Yangtze River floodplain, and detected with saturated brine floating and centrifugal sedimentation methods. Parasite eggs were quantified with a modified McMaster's counting method.

Results

In this study, 11 species of parasites were discovered, i.e., two coccidium (Eimeria gruis, E. reichenowi), five nematodes (Capillaria sp., Strongyloides sp., Ascaridia sp., Trichostrongylus sp., Ancylostomatidae), three trematodes (Echinostoma sp., Echinochasmus sp., Fasciolopsis sp.) and one cestode (Hymenolepis sp.). About 57.7% of the faecal samples showed parasitic infection. All species of parasites were found at the three sites except Hymenolepis which was not found at Poyang Lake. While most samples were affected by only one or two species of parasites, infection by Eimeria spp. was the most common (53.1%). From One-Way ANOVA analysis of the three lakes, parasite species richness index (p=0.656), diversity index (p=0.598) and evenness index (p=0.612) showed no significant difference. According to the statistical analysis of our data, there were no significant difference in parasite species richness index (p=0.678) and evenness index (p=0.238) between wintering periods, but a strong difference in diversity index (p < 0.05).

Conclusions

Our study suggests that in the wintering Hooded Crane populations, parasite diversity is more sensitive to changes in the overwintering periods than to locations. This also indicates that with the limitations of migration distance, the parasites may not form the differentiation in Hooded Crane populations of the three lakes.

total 10