Journal Home > Volume 12 , Issue 1
Background

The composition of intestinal microflora in animals is affected by cross-species transmission. In a nature reserve, the foraging sites of waterbirds are relatively fixed, but frequently close to residential areas and can also be visited by domestic fowls. It is easy to result in the trans-species-flock dispersal of gut microbes between the wild birds and domestic fowls. The effects of the variable foraging site distances on the gut microbe structures of the waterbirds and the sympatric domestic fowls are currently unclear, and further research is required to evaluate the impacts of geographic location on cross-infection.

Methods

Illumina high-throughput sequencing and bioinformatics analysis software were utilized to compare and analyze the composition of gut microbes from the fecal samples of Hooded Cranes (HC; Grus monacha) and two groups of Domestic Ducks (Anas platyrhynchos domesticus) that foraged at 1 km (ducks in near areas, D-N), and 4 km (ducks in far areas, D-F) away from the habitats of the Hooded Cranes at Shengjin Lake, China.

Results

The results showed that there were significant differences in the alpha-diversity of the gut bacteria in the HC, D-N, and D-F samples under the interspecific distance factor. The dominant bacterial phyla, Cyanobacteria and Proteobacteria, showed correlations with distance for each host. The D-N group had more diverse intestinal flora than the D-F, as they were physically closer to the HC and had more indirect contact and cross-transmission of their gut microbes. More potentially pathogenic bacterial sequences, and Operational Taxonomic Units (OTUs) were found in the D-N than in HC and D-F.

Conclusions

Hooded Cranes and the Domestic Duck populations at variable distances from the cranes showed significant differences in their intestinal bacteria and potentially pathogenic bacteria. The closer the foraging sites were, the easier the intestinal flora spread across species. The results provide a basis for determining the safe distance between wild birds and domestic fowls in a nature reserve.


menu
Abstract
Full text
Outline
About this article

Effects of foraging site distances on the intestinal bacterial community compositions of the sympatric wintering Hooded Crane (Grus monacha) and Domestic Duck (Anas platyrhynchos domesticus)

Show Author's information Wei Wang1,2Lizhi Zhou1,2( )Rong Fu1,2Lei Cheng1,2Shaofei Yan1,2Nazia Mahtab1,2Yunwei Song3
School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China
Administrative Office of Anhui Shengjin Lake National Nature Reserve, Dongzhi, 247210, China

Abstract

Background

The composition of intestinal microflora in animals is affected by cross-species transmission. In a nature reserve, the foraging sites of waterbirds are relatively fixed, but frequently close to residential areas and can also be visited by domestic fowls. It is easy to result in the trans-species-flock dispersal of gut microbes between the wild birds and domestic fowls. The effects of the variable foraging site distances on the gut microbe structures of the waterbirds and the sympatric domestic fowls are currently unclear, and further research is required to evaluate the impacts of geographic location on cross-infection.

Methods

Illumina high-throughput sequencing and bioinformatics analysis software were utilized to compare and analyze the composition of gut microbes from the fecal samples of Hooded Cranes (HC; Grus monacha) and two groups of Domestic Ducks (Anas platyrhynchos domesticus) that foraged at 1 km (ducks in near areas, D-N), and 4 km (ducks in far areas, D-F) away from the habitats of the Hooded Cranes at Shengjin Lake, China.

Results

The results showed that there were significant differences in the alpha-diversity of the gut bacteria in the HC, D-N, and D-F samples under the interspecific distance factor. The dominant bacterial phyla, Cyanobacteria and Proteobacteria, showed correlations with distance for each host. The D-N group had more diverse intestinal flora than the D-F, as they were physically closer to the HC and had more indirect contact and cross-transmission of their gut microbes. More potentially pathogenic bacterial sequences, and Operational Taxonomic Units (OTUs) were found in the D-N than in HC and D-F.

Conclusions

Hooded Cranes and the Domestic Duck populations at variable distances from the cranes showed significant differences in their intestinal bacteria and potentially pathogenic bacteria. The closer the foraging sites were, the easier the intestinal flora spread across species. The results provide a basis for determining the safe distance between wild birds and domestic fowls in a nature reserve.

Keywords: Bacterial community, Domestic Ducks, Gut microbes, Hooded Cranes, Inter-species dispersal, Intestinal microbe

References(68)

Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011;331: 296–302.

Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83: 557–74.https://doi.org/10.1890/12-2010.1
DOI

Benskin CMH, Wilson K, Jones K, Hartley IR. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev Camb Philos Soc. 2009;84: 349–73.

Bunnik BAD, Ssematimba A, Hagenaars TJ, Nodelijk G, Haverkate MR, Bonten MJM, et al. Small distances can keep bacteria at bay for days. Proc Natl Acad Sci U S A. 2014;119: 3556–60.

Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci. 2020;287: 20200652.

Cao L, Fox AD. Birds and people both depend on China's wetlands. Nature. 2009;460: 173.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6: 1621–4.

Delgado ML, Singh P, Funk JA, Moore JA, Cannell EM, Kanesfsky J, et al. Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb Ecol. 2017;74: 496–506.

Delsuc F, Metcalf JL, Parfrey LW, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23: 1301–17.

Deppe JL, Ward MP, Bolus RT, Diehl RH, Celis-Murillo A, Zenzal TJ Jr, et al. Fat, weather, and date affect migratory songbirds' departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc Natl Acad Sci USA. 2015;112: e6331–8.

Dong YQ, Xiang XJ, Zhao GH, Song YW, Zhou LZ. Variations in gut bacterial communities of hooded crane (Grus monacha) over spatial-temporal scales. PeerJ. 2019;7: e7045.

Dziva F, Stevens MP. Colibacillosis in poultry: unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol. 2008;37: 355–66.

Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26: 2460–1.

Elmberg J, Berg C, Lerner H, Waldenström J, Hessel R. Potential disease transmission from wild geese and swans to livestock, poultry and humans: a review of the scientific literature from a One Health perspective. Infect Ecol Epidemiol. 2017;7: 1300450.

Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ. 2018;627: 1018–38.

Friedland KD, Ahrenholz DW, Haas LW. Viable gut passage of cyanobacteria through the filter-feeding fish Atlantic menhaden, Brevoortia tyrannus. J Plankton Res. 2005;27: 715–8.

Fu R, Xiang XJ, Dong YQ, Cheng L, Zhou LL. Comparing the intestinal bacterial communities of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Res. 2020;11: 13.

Good C, Davidson J, Wiens GD, Welch TJ, Summerfelt S. Flavobacterium branchiophilum and F. succinicans associated with bacterial gill disease in rainbow trout Oncorhynchus mykiss (Walbaum) in water recirculation aquaculture systems. J Fish Dis. 2015;38: 409–13.

Grond K, Ryu H, Baker AJ, Santo Domingo JW, Buehler DM. Gastro-intestinal microbiota of two migratory shorebird species during spring migration staging in Delaware Bay, USA. J Ornithol. 2014;155: 969–77.

Hansen CM, Meixell BW, Van Hemert C, Hare RF, Hueffer K. Microbial infections are associated with embryo mortality in Arctic-nesting geese. Appl Environ Microb. 2015;81: 5583–92.

Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11: 1613.

Holman DB, Bearson BL, Allen HK, Shippy DC, Loving CL, Kerr BJ, et al. Chlortetracycline enhances tonsil colonization and fecal shedding of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 without major alterations to the porcine tonsillar and intestinal microbiota. Appl Environ Microbiol. 2019;85: e02354-e2418.

Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-based hypothesis of human-to-human transmission of non-communicable diseases. Sci Total Environ. 2020a;745: 141030.https://doi.org/10.1016/j.scitotenv.2020.141030
DOI
Huang SM, Wu ZH, Li TT, Liu C, Han DD, Tao SY, et al. Perturbation of the lipid metabolism and intestinal inflammation in growing pigs with low birth weight is associated with the alterations of gut microbiota. Sci Total Environ. 2020b;719: 137382.https://doi.org/10.1016/j.scitotenv.2020.137382
DOI

Hubálek Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildlife Dis. 2004;40: 639–59.

Iacob S, Iacob DG. Infectious threats, the intestinal barrier, and its Trojan Horse: dysbiosis. Front Microbiol. 2019;10: 1676.

IUCN. The IUCN red list of threatened species. Version 2019–3. 2020. https://www.iucnr.edlist.org.

Kang YF, Shen XJ, Yuan RY, Xiang B, Fang ZX, Murphy RW, et al. Pathogenicity and transmissibility of three avian influenza A (H5N6) viruses isolated from wild birds. J Infect. 2018;76: 286–94.

Knutie SA, Gotanda KM. A non-invasive method to collect fecal samples from wild birds for microbiome studies. Microb Ecol. 2018;76: 851–5.

Kong A, Zhang C, Cao Y, Cao Q, Liu F, Yang Y, et al. The fungicide thiram perturbs gut microbiota community and causes lipid metabolism disorder in chickens. Ecotox Environ Safe. 2020;206: 111400.

Leung TLF, Koprivnikar J. Nematode parasite diversity in birds: the role of host ecology, life history and migration. J Anim Ecol. 2016;85: 1471–80.

Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47: 659–68.

Liddicoat C, Sydnor H, Cando-Dumancela C, Dresken R, Liu J, Gellie NJC, et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ. 2020;701: 134684.

Liu D, Shi WF, Shi Y, Wang DY, Xiao HX, Li W, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381: 1926–32.

Liu G, Gong ZZ, Li QY. Variations in gut bacterial communities between lesser white-fronted geese wintering at Caizi and Shengjin lakes in China. MicrobiologyOpen. 2020;9: e1037.

Madden JR, Santilli F, Whiteside MA. The welfare of game birds destined for release into the wild: a balance between early life care and preparation for future natural hazards. Anim Welf. 2020;29: 1–18.

Mane SP, Dominguez-Bello MG, Blaser MJ, Sobral BW, Hontecillas R, Skoneczka J, et al. Host-interactive genes in Amerindian Helicobacter pylori diverge from their old world homologs and mediate inflammatory responses. J Bacteriol. 2010;192: 3078–92.

Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci U S A. 2017;114: 13768–73.

Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332: 970–4.

Nilsson L, Aronsson M, Persson J, Månsson J. Drifting space use of common cranes—is there a mismatch between daytime behaviour and management? Ecol Indic. 2018;85: 556–62.https://doi.org/10.1016/j.ecolind.2017.11.007
DOI

Perofsky AC, Lewis RJ, Meyers LA. Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals. ISME J. 2019;13: 50–63.

Reed KD, Meece JK, Henkel JS, Shukla SK. Birds, migration and emerging zoonoses: west nile virus, lyme disease, influenza A and enteropathogens. Clin Med Res. 2003;1: 5–12.

Revolledo L, Ferreira AJP, Mead GC. Prospects in Salmonella control: competitive exclusion, probiotics, and enhancement of avian intestinal immunity. J Appl Poultry Res. 2006;15: 341–51.

Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol. 2014;12: 535–49.

Rouger A, Tresse O, Zagorec M. Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms. 2017;5: 50.

Ryu H, Grond K, Verheijen B, Elk M, Buehler DM, Santo Domingo JW. Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay. Appl Environ Microbiol. 2014;80: 1838–47.

Sarkar A, Harty S, Johnson KVA, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4: 1020–35.

Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell. 2014;159: 253–66.

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12: R60.

Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33: 496–503.

van Veelen HPJ, Salles JF, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5: 156.

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73: 5261–7.

Wang C, Wang L, Deng DG, Zhou ZZ. Temporal and spatial variations in rotifer correlations with environmental factors in Shengjin Lake. China Environ Sci Pollut Res Int. 2016;23: 8076–84.

Wang WJ, Fraser JD, Chen JK. Wintering waterbirds in the middle and lower Yangtze River floodplain: changes in abundance and distribution. Bird Conserv Int. 2017;27: 167–86.

Warnke P, Köller T, Stoll P, Podbielski A. Nosocomial infection due to Enterococcus cecorum identified by MALDI-TOF MS and Vitek 2 from a blood culture of a septic patient. Eur J Microbiol Immunol. 2015;5: 177–9.

Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poult Sci. 2013;92: 671–83.

Wei ZH, Zheng M, Zhou LZ, Xu WB. Flexible foraging response of wintering Hooded Cranes (Grus monacha) to food availability in the lakes of the Yangtze River floodplain. China Animals. 2020;10: 568.

Xiang XJ, Zhang FL, Fu R, Yan SF, Zhou LZ. Significant differences in bacterial and potentially pathogenic communities between sympatric hooded crane and greater white-fronted goose. Front Microbiol. 2019;10: 163.

Xu X, Xu P, Ma C, Tang J, Zhang X. Gut microbiota, host health, and polysaccharides. Biotechnol Adv. 2013;31: 318–37.

Yang ZQ, Zhou LZ. Is intestinal bacterial diversity enhanced by trans-species spread in the mixed-species flock of hooded crane (Grus monacha) and bean goose (Anser fabalis) wintering in the lower and middle Yangtze River floodplain? Animals. 2021;11: 233.https://doi.org/10.3390/ani11010233
DOI

Zamani M, Vahedi A, Maghdouri Z, Shokri-Shirvani J. Role of food in environmental transmission of Helicobacter pylori. Caspian J Intern Med. 2017;8: 146–52.

Zhang TJ, Li HF, Chen KW, Chang H, Tang QQ, Zhang JX. Genetic diversity and systematic evolution of Chinese domestic ducks along the Yangtze-Huai River. Biochem Genet. 2007;45: 823–37.

Zhang Y, Fox AD, Cao L, Jia Q, Lu CH, Prins HHT, et al. Effects of ecological and anthropogenic factors on waterbird abundance at a Ramsar Site in the Yangtze River Floodplain. Ambio. 2018;48: 293–303.

Zhang FL, Xiang XJ, Dong YQ, Yan SF, Song YW, Zhou LZ. Significant differences in the gut bacterial communities of Hooded crane (Grus monacha) in different seasons at a stopover site on the flyway. Animals. 2020;10: 701.

Zhao FT, Zhou LZ, Xu WB. Habitat utilization and resource partitioning of wintering Hooded Cranes and three goose species at Shengjin Lake. Chinese Birds. 2013;4: 281–90.

Zheng M, Zhou LZ, Zhao NN, Xu WB. Effects of variation in food resources on foraging habitat use by wintering Hooded Cranes (Grus monacha). Avian Res. 2015;6: 11.

Zhou J, Zhou LZ, Xu WB. Diversity of wintering waterbirds enhanced by restoring aquatic vegetation at Shengjin Lake. China Sci Total Environ. 2020;737: 140190.

Zou YA, Pan BH, Zhang H, Zhang PY, Yao Y, Liu XK, et al. Impacts of microhabitat changes on wintering waterbird populations. Sci Rep. 2017;7: 13934.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 November 2020
Accepted: 22 April 2021
Published: 03 May 2021
Issue date: January 2021

Copyright

© The Author(s) 2021.

Acknowledgements

We would like to thank our research team: Zhuqing Yang, Nazhong Zhang, Jingjing Gu and Dazhao Liu for their assistance in sample collection, analysis software and mapping.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return