Sort:
Research Article Issue
Polarity control of carrier injection for nanowire feedback field-effect transistors
Nano Research 2019, 12 (10): 2509-2514
Published: 01 August 2019
Downloads:34

We present polarity control of the carrier injection for a feedback field-effect transistor (FBFET) with a selectively thinned p+-i-n+ Si nanowire (SiNW) channel and two separate gates. The SiNW FBFET can be reconfigured in the p- or n-channel operation modes via simple control of electric signals. The two separate gates induce potential barriers in the SiNW channel for selective control of the carrier injection. In contrast to previously reported reconfigurable transistors, our transistor features symmetry of the electrical characteristics for the p- and n-channel operation modes. Positive-feedback operation of the SiNW FBFET provides superior switching characteristics for the p- and n-type configurations, including the on/off ratios (~ 105) and subthreshold swings (1.36–1.78 mV/dec). This novel transistor is a promising candidate for reconfigurable electronics.

Research Article Issue
Silicon nanowire ratioed inverters on bendable substrates
Nano Research 2018, 11 (5): 2586-2591
Published: 12 May 2018
Downloads:18

In this study, we demonstrate the performance of silicon nanowire (SiNW)n-metal oxide semiconductor (MOS) and p-MOS ratioed inverters that are fabricated on bendable substrates. The electrical characteristics of the fabricateddevices can be controlled by adjusting the load voltage. The logic swings of then- and p-MOS ratioed inverters at a low supply voltage of 1 V are 80% and 96%, respectively. The output voltage level of the p-MOS ratioed inverter is close to rail-to-rail operation. The device also exhibits stable characteristics with goodfatigue properties. Our bendable SiNW ratioed inverters show promise asa candidate building block for future bendable electronics.

Research Article Issue
Silicon nanowire CMOS NOR logic gates featuring one-volt operation on bendable substrates
Nano Research 2018, 11 (5): 2625-2631
Published: 12 May 2018
Downloads:11

In this study, we propose complementary metal-oxide-semiconductor (CMOS) NOR logic gates consisting of silicon nanowire (NW) arrays on bendable substrates. A circuit consisting of two p-channel NW field-effect transistors (NWFETs) in series and two n-channel NWFETs in parallel is constructed to operate a two-input CMOS NOR logic gate. The NOR logic gates operate at a low supply voltage of 1 V with a rail-to-rail logic swing and a high voltage gain of approximately?3.0. The exact NOR logic functionality is achieved owing to the superior electrical characteristics of the well-aligned p- and n-NWFETs, which are obtained using conventional Si-based CMOS technology. Moreover, the NOR logic gates exhibit stable characteristics and have good mechanical properties. The proposed bendable NW CMOS NOR logic gates are promising building blocks for future bendable integrated electronics.

Research Article Issue
Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices
Nano Research 2017, 10 (2): 683-689
Published: 10 November 2016
Downloads:10

We synthesized thermoelectric nanocomposites by mixing HgSe nanoparticles (NPs) and Ag NPs in a solution and investigated the thermoelectric properties of the nanocomposite thin films on flexible plastic substrates. The X-ray diffraction patterns and the X-ray photoelectron spectra of the nanocomposites demonstrate that cation-exchange reactions occurred spontaneously in the mixed solution of HgSe and Ag NPs and that the HgSe NPs were completely converted to Ag2Se when the Ag NP content was 20 vol.%. The maximum power factor and the thermoelectric figure of merit were obtained as 75 μW/mK2 and 0.043 at 300 K, respectively, when the Ag NP content was 10 vol.%, which is 100 times higher than that of HgSe NP thin films. In addition, the mechanical stability of the thermoelectric nanocomposite film was confirmed through repeated bending tests.

Research Article Issue
Low-power functionality of silicon-nanowire-assembled inverters on bendable plastics
Nano Research 2016, 9 (5): 1409-1417
Published: 29 September 2016
Downloads:18

In this paper, we demonstrate the low-power functionality of silicon nanowire (SiNW)-assembled inverters on bendable plastics. Our bendable inverters are capable of operating at supply voltages as low as 0.8 V with a switching (or standby) power consumption of ~0.2 nW (or ~6.6 pW). The low-power inverting operation with a voltage gain of ~18 is attributable to the near-ideal characteristics of the component transistors that have selectively thinned SiNW channels and exhibit low, symmetrical threshold voltages of 0.40 and?0.39 V and low sub-threshold swing values of 81 and 65 mV/dec. Moreover, mechanical bendability reveals that the inverting operation has good, stable fatigue properties.

Research Article Issue
Nanowatt power operation of silicon nanowire NAND logic gates on bendable substrates
Nano Research 2016, 9 (12): 3656-3662
Published: 01 September 2016
Downloads:13

In this paper, we propose a novel construction of silicon nanowire (SiNW) negative-AND (NAND) logic gates on bendable plastic substrates and describe their electrical characteristics. The NAND logic gates with SiNW channels are capable of operating with a supply voltage as low as 0.8 V, with switching and standby power consumption of approximately 1.1 and 0.068 nW, respectively. Superior electrical characteristics of each SiNW transistor, including steep subthreshold slopes, high Ion/off ratio, and symmetrical threshold voltages, are the major factors that enable nanowatt-range power operation of the logic gates. Moreover, the mechanical bendability of the logic gates indicates that they have good and stable fatigue properties.

Research Article Issue
NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels
Nano Research 2016, 9 (2): 499-506
Published: 09 December 2015
Downloads:16

In this study, we propose a novel combination of tunneling field-effect transistors (TFETs) with asymmetrically doped p+-i-n+ silicon nanowire (SiNW) channels on a bendable substrate. The combination of two n-channel SiNW-TFETs (NWTFETs) in parallel and two p-channel NWTFETs in series operates as a two-input NOR logic gate. The component NWTFETs with the n- and p-channels exhibit subthreshold swings (SSs) of 69 and 53 mV·dec-1, respectively, and the on/off current ratios are ~106. The NOR logic operation is sustainable and reproducible for up to 1, 000 bending cycles with a narrow transition width of ~0.26 V. The mechanical bendability of the bendable NWTFETs shows that they are stable and have good fatigue properties. To the best of our knowledge, this is the first study on the electrical and mechanical characteristics of a bendable NOR logic gate composed of NWTFETs.

total 7