Journal Home > Volume 10 , Issue 2

We synthesized thermoelectric nanocomposites by mixing HgSe nanoparticles (NPs) and Ag NPs in a solution and investigated the thermoelectric properties of the nanocomposite thin films on flexible plastic substrates. The X-ray diffraction patterns and the X-ray photoelectron spectra of the nanocomposites demonstrate that cation-exchange reactions occurred spontaneously in the mixed solution of HgSe and Ag NPs and that the HgSe NPs were completely converted to Ag2Se when the Ag NP content was 20 vol.%. The maximum power factor and the thermoelectric figure of merit were obtained as 75 μW/mK2 and 0.043 at 300 K, respectively, when the Ag NP content was 10 vol.%, which is 100 times higher than that of HgSe NP thin films. In addition, the mechanical stability of the thermoelectric nanocomposite film was confirmed through repeated bending tests.


menu
Abstract
Full text
Outline
About this article

Thermoelectric characteristics of nanocomposites made of HgSe and Ag nanoparticles for flexible thermoelectric devices

Show Author's information Junggwon YunKyoungah Cho( )Yoonbeom ParkSeunggen YangJinyong ChoiSangsig Kim( )
Department of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-701, Republic of Korea

Abstract

We synthesized thermoelectric nanocomposites by mixing HgSe nanoparticles (NPs) and Ag NPs in a solution and investigated the thermoelectric properties of the nanocomposite thin films on flexible plastic substrates. The X-ray diffraction patterns and the X-ray photoelectron spectra of the nanocomposites demonstrate that cation-exchange reactions occurred spontaneously in the mixed solution of HgSe and Ag NPs and that the HgSe NPs were completely converted to Ag2Se when the Ag NP content was 20 vol.%. The maximum power factor and the thermoelectric figure of merit were obtained as 75 μW/mK2 and 0.043 at 300 K, respectively, when the Ag NP content was 10 vol.%, which is 100 times higher than that of HgSe NP thin films. In addition, the mechanical stability of the thermoelectric nanocomposite film was confirmed through repeated bending tests.

Keywords: nanoparticles, nanocomposite, HgSe, Ag2Se, flexible thermoelectric

References(27)

1
Rowe, D. M. Thermoelectrics Handbook: Macro to Nano; CRC Press: Boca Raton, FL, USA, 2006.
2

Zhang, Q. H.; Ai, X.; Wang, L. J.; Chang, Y. X.; Luo, W.; Jiang, W.; Chen, L. D. Improved thermoelectric performance of silver nanoparticles-dispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 2015, 25, 966–976.

3

Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114.

4

Alam, H.; Ramakrishna, S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2013, 2, 190–212.

5

Tsubota, T.; Ohtaki, M.; Eguchi, K.; Arai, H. Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion. J. Mater. Chem. 1997, 7, 85–90.

6

Wang, H.; Li, J. F.; Nan, C. W.; Zhou, M.; Liu, W. S.; Zhang, B. P.; Kit, T. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl. Phys. Lett. 2006, 88, 092104.

7

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602.

8

Kim, W.; Zide, J.; Gossard, A.; Klenov, D.; Stemmer, S.; Shakouri, A.; Majumdar, A. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 2006, 96, 045901.

9

Zhou, X. Y.; Wang, G. Y.; Zhang, L.; Chi, H.; Su, X. L.; Sakamoto, J.; Uher, C. Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion. J. Mater. Chem. 2012, 22, 2958–2964.

10

Yun, J.; Cho, K.; Kim, S. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics. ACS Appl. Mater. Interfaces 2012, 4, 5839–5843.

11

Ibáñez, M.; Luo, Z. S., Genç, A.; Piveteau, L.; Ortega, S.; Cadavid, D.; Dobrozhan, O.; Liu, Y.; Nachtegaal, M.; Zebarjadi, M. et al. High-performance thermoelectric nano­composites from nanocrystal building blocks. Nat. Commun. 2016, 7, 10766.

12

Sun, Y. M.; Fang, H. Y.; Pan, L. J.; Han, M.; Xu, S.; Wang, X. W.; Xu, B.; Wu, Y. Impact of surface-bound small molecules on the thermoelectric property of self-assembled Ag2Te nanocrystal thin films. Nano Lett. 2015, 15, 3748−3756.

13

Yun, J.; Cho, K.; Park, B.; Kang, H. C.; Ju, B. K.; Kim, S. Optical heating of ink-jet printable Ag and Ag–Cu nano­particles. Jpn. J. Appl. Phys. 2008, 47, 5070–5075.

14

Choi, J.; Cho, K.; Kim, S. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air. Nanotechnology 2013, 24, 455402.

15

Dames, C. Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 2013, 16, 7–49.

16

Liu, Y. Q.; Tainoff, D.; Boukhari, M.; Richard, J.; Barski, A.; Bayle-Guillemaud, P.; Hadji, E.; Bourgeois, O. Sensitive 3-omega measurements on epitaxial thermoelectric thin films. IOP Conf. Ser. : Mater. Sci. Eng. 2014, 68, 012005.

17

Myung, Y.; Im, H. S.; Kim, C. H.; Jung, C. S.; Cho, Y. J.; Jang, D. M.; Kim, H. S.; Back, S. H.; Park, J. Photo-induced cation exchange reaction of germanium chalcogenide nano­crystals synthesized using gas-phase laser photolysis reaction. Chem. Commun. 2013, 49, 187–189.

18
Luo, Y. R. Bond dissociation energies. In CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press: Boca Raton, FL, USA, 2009.
19

Zhu, C. N.; Jiang, P.; Zhang, Z. L.; Zhu, D. L.; Tian, Z. Q.; Pang, D. W. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces 2013, 5, 1186–1189.

20

Radnik, J.; Mohr, C.; Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys. Chem. Chem. Phys. 2003, 5, 172–177.

21

Martin, J.; Wang, L.; Chen, L. D.; Nolas, G. S. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 2009, 79, 115311.

22

Ibáñez, M.; Zamani, R.; Gorsse, S.; Fan, J. D.; Ortega, S.; Cadavid, D.; Morante, J. R.; Arbiol, J.; Cabot, A. Core–shell nanoparticles as building blocks for the bottom-up production of functional nanocomposites: PbTe–PbS thermoelectric properties. ACS Nano 2013, 7, 2573–2586.

23

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.

24

Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C.-I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High- performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

25

Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821.

26

Kim, S. I.; Lee, K. H.; Mum, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H. et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114.

27

Ibáñez, M.; Zamani, R.; Li, W. H.; Cadavid, D.; Gorsse, S.; Katcho, N. A.; Shavel, A.; López, A. M.; Morante, J. R.; Arbiol, J. et al. Crystallographic control at the nanoscale to enhance functionality: Polytypic Cu2GeSe3 nanoparticles as thermoelectric materials. Chem. Mater. 2012, 24, 4615–4622.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2016
Revised: 03 October 2016
Accepted: 12 October 2016
Published: 10 November 2016
Issue date: February 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the Mid-career Researcher Program (No. NRF-2013R1A2A1A03070750) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology, the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. NRF-2015R1A5A7037674), and the Brain Korea 21 Plus Project in 2016.

Return