Sort:
Open Access Research Article Issue
Seed-aided green synthesis of metal-organic frameworks in water
Green Chemical Engineering 2023, 4 (1): 64-72
Published: 30 April 2022
Downloads:4

Green synthesis of metal-organic frameworks (MOFs) in water with alleviated environmental influence and reduced cost is an essential step to transfer laboratory MOFs research to industrial application. Switching from the commonly used organic solvents to pure water encounters challenges of the poor solubility of organic linkers, slow reaction kinetics, and the formation of polymorphic products. So far, a universal MOFs synthetic strategy in water system has yet to be developed. This study reports the seed-aided synthesis of eleven MOFs with diverse compositions and structures while pure water serving as solvent. The corresponding reaction temperature and time of using this new strategy were reduced compared with original synthetic approaches, while the products maintain porous structure and high crystallinity. The success of this strategy relies on the addition of parent MOFs as seeds which could promote crystallization process by skipping the time-consuming induction period and avoiding the formation of polymorphic impurities.

Research Article Issue
Specific sensing of antibiotics with metal-organic frameworks based dual sensor system
Nano Research 2022, 15 (7): 6430-6437
Published: 20 April 2022
Downloads:64

The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health. The specific sensing of antibiotics with different toxicity levels is of high challenge, and mainly relies on expensive, time-consuming, and complex instruments. To realize specific sensing by rapid and handy optical sensors, a metal-organic framework (MOF) based dual sensor system is herein developed using two MOF materials BUT-128 and BUT-129 with high sensing selectivity and sensitivity. BUT-128 and BUT-129 exhibit the lowest limit of detection (LOD) towards chloramphenicol and furazolidone among reported MOF sensors. The corresponding dual sensor system with enriched signal readouts realized specific sensing of the strictly forbidden antibiotics (chloramphenicol and nitrofurans) from other regulated veterinary drugs including thiamphenicol, a structural analog of chloramphenicol. Besides, the strategy of this work is expected to flourish the development of optical sensors with high specificity for environment and food safety purposes.

Research Article Issue
Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting
Nano Research 2021, 14 (12): 4548-4555
Published: 24 March 2021
Downloads:58

Enhancing electrocatalytic water splitting performance by modulating the intrinsic electronic structure is of great importance. Here, porous bimetallic oxide and chalcogenide nanosheets grown on carbon paper denoted as NiCo2X4/CP (X = O, S, and Se) are prepared to demonstrate how the anion components affect the electronic structures and thereby disclose the correlation between their intermediates interaction and catalytic activities. The experimental characterization and theoretical calculation demonstrate that Se and S substitution can promote the ratio of Co3+/Co2+ and thereby modulate the electronic structure accompanied with the upshift of d band centers, which not only enhance the inner conductivity but also regulate the interaction between the catalyst surface and intermediates, especially for the adsorption of absorbed H and hydroperoxy intermediates towards respective hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, a full alkaline electrolyzer using NiCo2Se4/CP and NiCo2S4/CP as cathode and anode delivers a low voltage of 1.51 V at 10 mA·cm-2, which is comparable even superior to most transition metal-based electrolyzers.

Open Access Research Article Issue
Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction
Green Chemical Engineering 2020, 1 (1): 48-55
Published: 13 October 2020
Downloads:1

Photocatalytic CO2 reduction to convert solar energy to clean energy remains a critical challenge in exploring efficient catalysts. Herein, a hierarchical structured BiVO4@Au@UiO-66-NH2 with high photocatalytic activity was fabricated. The theoretical calculations revealed that the metal–organic framework (MOF) with relative higher conduction band (CB) and UiO-66-NH2 with relative lower valence band (VB) could absorb full light spectrum, combining Au nanoparticle with suitable Fermi level into a particulate tandem heterojunction. This configuration can not only lower the activation barrier of CO2 reduction using the rich active site of MOF, but also improve the selectivity toward CO by optimizing the reaction pathway. Notably, the experimental evaluation proved that BiVO4@Au@UiO-66-NH2 displays a producing rate of 232.7 μmol h−1 g−1 for CO and a selectivity of 97.2%. The investigation reveals that elaborately integrating multiple functional components into such a hierarchical structure enables optimizing crucial processes in photocatalytic CO2 conversion and enhancing selectivity via synergistic catalysis.

total 4