AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction

Yibo Doua,1Si-Min Xub,1Awu ZhouaHaozheng WangaJian ZhouaHong YanbJian-Rong Lia( )
Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China

1 Y. Dou and S.-M. Xu. Contributed equally.

Show Author Information

HIGHLIGHTS

● A hierarchical structured BiVO4@Au@UiO-66-NH2 photocatalyst is fabricated.

● The resultant photocatalyst exhibits high performance for CO2 reduction towards CO.

● A feasible strategy for optimizing crucial processes in enhancing CO2 conversion and selectivity is developed.

Graphical Abstract

Abstract

Photocatalytic CO2 reduction to convert solar energy to clean energy remains a critical challenge in exploring efficient catalysts. Herein, a hierarchical structured BiVO4@Au@UiO-66-NH2 with high photocatalytic activity was fabricated. The theoretical calculations revealed that the metal–organic framework (MOF) with relative higher conduction band (CB) and UiO-66-NH2 with relative lower valence band (VB) could absorb full light spectrum, combining Au nanoparticle with suitable Fermi level into a particulate tandem heterojunction. This configuration can not only lower the activation barrier of CO2 reduction using the rich active site of MOF, but also improve the selectivity toward CO by optimizing the reaction pathway. Notably, the experimental evaluation proved that BiVO4@Au@UiO-66-NH2 displays a producing rate of 232.7 μmol h−1 g−1 for CO and a selectivity of 97.2%. The investigation reveals that elaborately integrating multiple functional components into such a hierarchical structure enables optimizing crucial processes in photocatalytic CO2 conversion and enhancing selectivity via synergistic catalysis.

References

[1]

S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488 (2012) 294–303.

[2]

G.H. Rau, H.D. Willauer, Z.J. Ren, The global potential for converting renewable electricity to negative-CO2-emissions hydrogen, Nat. Clim. Change 8 (2018) 621–625.

[3]

O.S. Bushuyev, P. Luna, C.T. Dinh, L. Tao, G. Saur, J. Lagemaat, S.O. Kelley, E.H. Sargent, What should we make with CO2 and how can we make it? Joule 2 (2018) 1–8.

[4]

X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (2016) 2177–2196.

[5]

H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Visible-light-driven methane formation from CO2 with a molecular iron catalyst, Nature 548 (2017) 74–77.

[6]

J. Zhang, V. Haribal, F. Li, Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme, Sci. Adv. 3 (2017), e1701184.

[7]

N. Kornienko, J. Zhang, Z. Sakimoto, P. Yang, E. Reisner, Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis, Nat. Nanotechnol. 13 (2018) 890–899.

[8]

D.M. Schultz, T.P. Yoon, Solar synthesis: prospects in visible light photocatalysis, Science 343 (2014) 1239176.

[9]

S. Yu, A.J. Wilson, G. Kumari, X. Zhang, P.K. Jain, Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts, ACS Energy Lett. 2 (2017) 2058–2070.

[10]

F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev. 42 (2013) 2294–2320.

[11]

S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano 4 (2010) 1259–1278.

[12]

J. Mao, K. Li, T. Peng, Recent advances in the photocatalytic CO2 reduction over semiconductors, Catal. Sci. Technol. 3 (2013) 2481–2498.

[13]

Y. Wei, J. Jiao, Z. Zhao, W. Zhong, J. Li, J. Liu, G. Jiang, A. Duan, 3D ordered macroporous TiO2-supported Pt@CdS core–shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane, J. Mater. Chem. 3 (2015) 11074–11085.

[14]

H. Zhou, Y. Qu, T. Zeid, X. Duan, Towards highly efficient photocatalysts using semiconductor nanoarchitectures, Energy Environ. Sci. 5 (2012) 6732–6743.

[15]

G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution raction under visible light, Energy Environ. Sci. 12 (2019) 2080–2147.

[16]

Z. Lian, M. Sakamoto, J.J. Vequizo, C.K. Ranasinghe, A. Yamakata, T. Nagai, K. Kimoto, Y. Kobayashi, N. Tamai, T. Teranishi, Plasmonic p–n junction for infrared light to chemical energy conversion, J. Am. Chem. Soc. 141 (2018) 2446–2450.

[17]

P. Zhou, J. Yu, M. Jaroniec, All-solid-state Z-scheme photocatalytic systems, Adv. Mater. 26 (2014) 4920–4935.

[18]

Y. Wang, Z. Zhang, L. Zhang, Z. Luo, J. Shen, H. Lin, J. Long, J.C. Wu, X. Fu, X. Wang, Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure, J. Am. Chem. Soc. 140 (2018) 14595–14598.

[19]

K.-L. Bae, J. Kim, C.K. Lim, K.M. Nam, H. Song, Colloidal zinc oxide–copper(Ⅰ) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane, Nat. Commun. 8 (2017) 1156.

[20]

D. Deng, K.S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao, Catalysis with two-dimensional materials and their heterostructures, Nat. Nanotechnol. 11 (2016) 218–230.

[21]

J. Hu, D. Chen, Z. Mo, N. Li, Q. Xu, H. Li, J. He, H. Xu, J. Lu, Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities, Angew. Chem. Int. Ed. 58 (2019) 2073–2077.

[22]

B. Sun, W. Zhou, H. Li, L. Ren, P. Qiao, W. Li, H. Fu, Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production, Adv. Mater. 30 (2018) 1804282.

[23]

M.B. Chambers, X. Wang, L. Ellezam, O. Ersen, M. Fontecave, C. Sanchez, L. Rozes, C. Mellot-Draznieks, Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2, J. Am. Chem. Soc. 139 (2017) 8222–8228.

[24]

Z. Zhang, T. Zhang, C. Wang, Z. Lin, L. Long, W. Lin, Photosensitizing metal–organic framework enabling visible-light-driven proton reduction by a wells–dawson-type polyoxometalate, J. Am. Chem. Soc. 137 (2015) 3197–3200.

[25]

J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu, H.-L. Jiang, Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: the platinum location matters, Angew. Chem. Int. Ed. 55 (2016) 9389–9393.

[26]

Y. Zhang, J. Guo, L. Shi, Y. Zhu, K. Hou, Y. Zheng, Z. Tang, Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis, Sci. Adv. 3 (2017) 763–769, e1701162.

[27]

B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y.J. Xu, Z. Lin, Nickel metal–organic frameworks monolayers for photoreduction of diluted CO2: metal-node-dependent activity and selectivity, Angew. Chem. Int. Ed. 57 (2018) 1–6.

[28]

J.W. Maina, C. Pozo-Gonzalo, L. Kong, J. Schütz, M. Hill, L.F. Dumée, Metal organic framework based catalysts for CO2 conversion, Mater. Horiz. 4 (2017) 345–361.

[29]

Z.H. Yan, M.H. Du, J. Liu, S. Jin, C. Wang, G.L. Zhuang, X.J. Kong, L.S. Long, L.S. Zheng, Photo–generated dinuclear {Eu(Ⅱ)}2 active sites for selective CO2 reduction in a photosensitizing metal–organic framework, Nat. Commun. 9 (2018) 3353.

[30]

C.S. Diercks, Y. Liu, K.E. Cordova, O.M. Yaghi, The role of reticular chemistry in the design of CO2 reduction catalysts, Nat. Mater. 17 (2018) 301–307.

[31]

M.B. Majewski, A.W. Peters, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Metal–organic frameworks as platform materials for solar fuels catalysis, ACS Energy Lett. 3 (2018) 598–611.

[32]

L. Zeng, X. Guo, C. He, C. Duan, Metal–organic frameworks: versatile materials for heterogeneous photocatalysis, ACS Catal. 6 (2016) 7935–7947.

[33]

P.D. Tran, L.H. Wong, J. Barber, J.S. Loo, Recent advances in hybrid photocatalysts for solar fuel production, Energy Environ. Sci. 5 (2012) 5902–5918.

[34]

Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction, ACS Energy Lett. 3 (2018) 2656–2662.

[35]

Q. Liu, Z.-X. Low, L. Li, A. Razmjou, K. Wang, J. Yao, H. Wang, ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel, J. Mater. Chem. 1 (2013) 11563–11569.

[36]

R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H.L. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions, Adv. Mater. 26 (2014) 4783–4788.

[37]

A. Crake, K.C. Christoforidis, A. Kafizas, S. Zafeiratos, C. Petit, CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation, Appl. Catal. B Environ. 210 (2017) 131–140.

[38]

Y. Su, Z. Zhang, H. Liu, Y. Wang, Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction, Appl. Catal. B Environ. 200 (2017) 448–457.

[39]

H.L. Tan, R. Amal, Y.H. Ng, Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review, J. Mater. Chem. 5 (2017) 16498–16521.

[40]

M. Han, X. Chen, T. Sun, O.K. Tan, M.S. Tse, Synthesis of mono-dispersed m-BiVO4 octahedral nano-crystals with enhanced visible light photocatalytic properties, CrystEngComm 13 (2011) 6674–6679.

[41]

J. Sun, X. Li, Q. Zhao, M.O. Tadé, S. Liu, Quantum-sized BiVO4 modified TiO2 microflower composite heterostructures: efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene, J. Mater. Chem. 3 (2015) 21655–21663.

[42]

F. Lin, Z. Shao, Z. Chen, X. Liu, M. Li, B. Zhang, J. Huang, G. Zhu, B. Dong, Low-cost dual cocatalysts BiVO4 for highly eficient visible photocatalytic oxidation, RSC Adv. 7 (2017) 15053–15059.

[43]

Y. Dou, J. Zhou, A. Zhou, J. Li, Z. Nie, Visible-light responsive MOF encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting, J. Mater. Chem. 5 (2018) 19491–19498.

[44]

Y. Zhao, G. Chen, T. Bian, C. Zhou, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, L.J. Smith, D. O'Hare, T. Zhang, Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water, Adv. Mater. 27 (2015) 7824–7831.

[45]

J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn, T.F. Jaramillo, K. Chan, A.T. Bell, Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide, J. Am. Chem. Soc. 139 (2017) 11277–11287.

[46]

A. Bhowmik, H.A. Hansen, T. Vegge, Role of CO* as a spectator in CO2 electroreduction on RuO2, J. Phys. Chem. C 121 (2017) 18333–18343.

[47]

X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (2016) 2177–2196.

[48]

L. Tan, S.-M. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, W. Zhang, Y.K. Jo, S.-J. Hwang, X. Cao, X. Zheng, H. Yan, Y. Zhao, H. Duan, Y.-F. Song, Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm, Angew. Chem. Int. Ed. 58 (2019) 11860–11867.

[49]

M. Wang, Y. Hu, J. Han, R. Guo, H. Xiong, Y. Yin, TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light, J. Mater. Chem. 3 (2015) 20727–20735.

[50]

X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers, Nat. Energy 4 (2019) 690–699.

Green Chemical Engineering
Pages 48-55
Cite this article:
Dou Y, Xu S-M, Zhou A, et al. Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction. Green Chemical Engineering, 2020, 1(1): 48-55. https://doi.org/10.1016/j.gce.2020.09.009

172

Views

6

Downloads

20

Crossref

22

Web of Science

25

Scopus

0

CSCD

Altmetrics

Published: 13 October 2020
© 2020 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return