AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Seed-aided green synthesis of metal-organic frameworks in water

Hao-Tian AnXin ZhangChen DongMu-Yao LuRui LiYabo XieLin-Hua XieJian-Rong Li( )
Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
Show Author Information

HIGHLIGHTS

● Discussed the energy structure transformation under the context of carbon neutrality.

● Highlighted the significance of coal bed methane emission control and utilization under the context of carbon neutrality.

● Highlighted the novelty of a recent work of coal bed methane recovery by emerging porous materials.

● Aimed to stimulate conversations between different research fields towards the goal of carbon neutrality.

Graphical Abstract

Abstract

Green synthesis of metal-organic frameworks (MOFs) in water with alleviated environmental influence and reduced cost is an essential step to transfer laboratory MOFs research to industrial application. Switching from the commonly used organic solvents to pure water encounters challenges of the poor solubility of organic linkers, slow reaction kinetics, and the formation of polymorphic products. So far, a universal MOFs synthetic strategy in water system has yet to be developed. This study reports the seed-aided synthesis of eleven MOFs with diverse compositions and structures while pure water serving as solvent. The corresponding reaction temperature and time of using this new strategy were reduced compared with original synthetic approaches, while the products maintain porous structure and high crystallinity. The success of this strategy relies on the addition of parent MOFs as seeds which could promote crystallization process by skipping the time-consuming induction period and avoiding the formation of polymorphic impurities.

References

[1]

H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444.

[2]

D. Huang, G. Wang, M. Cheng, G. Zhang, S. Chen, Y. Liu, Z. Li, W. Xue, L. Lei, R. Xiao, Optimal preparation of catalytic Metal-organic framework derivatives and their efficient application in advanced oxidation processes, Chem. Eng. J. 421 (2021) 127817.

[3]

W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, S.K. Ghosh, Metal-organic frameworks: functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev. 46 (2017) 3242–3285.

[4]

D.-W. Lim, H. Kitagawa, Rational strategies for proton-conductive metal–organic frameworks, Chem. Soc. Rev. 50 (2021) 6349–6368.

[5]

B. Li, H.-M. Wen, W. Zhou, Jeff Q. Xu, B. Chen, Porous metal-organic frameworks: promising materials for methane storage, Inside Chem. 1 (2016) 557–580.

[6]

J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 38 (2009) 1477–1504.

[7]

Z. Zhang, X. Jia, Y. Sun, X. Guo, H. Huang, C. Zhong, Pore engineering of ZIF-8 with ionic liquids for membrane-based CO2 separation: bearing functional group effect, Green Chem. Eng. 2 (2021) 104–110.

[8]

P.M. Schoenecker, C.G. Carson, H. Jasuja, C.J.J. Flemming, K.S. Walton, Effect of water adsorption on retention of structure and surface area of metal–organic frameworks, Ind. Eng. Chem. Res. 51 (2012) 6513–6519.

[9]

J.-W. Ren, X. Dyosiba, N.M. Musyoka, H.W. Langmi, M. Mathe, S.J. Liao, Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs), Coord. Chem. Rev. 352 (2017) 187–219.

[10]

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.-C. Zhou, Stable metal-organic frameworks: design, synthesis, and applications, Adv. Mater. 30 (2018) e1704303.

[11]

T. He, X.-J. Kong, J.-R. Li, Chemically stable metal-organic frameworks: rational construction and application expansion, Acc. Chem. Res. 54 (2021) 3083–3094.

[12]

X. Zhang, B. Wang, A. Alsalme, S.-C. Xiang, Z.-J. Zhang, B.-L. Chen, Design and applications of water-stable metal-organic frameworks: status and challenges, Coord. Chem. Rev. 423 (2020) 213507.

[13]

F. Lorignon, A. Gossard, M. Carboni, Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment, Chem. Eng. J. 393 (2020) 124765.

[14]

H. Kim, S. Yang, S.R. Rao, S. Narayanan, E.A. Kapustin, H. Furukawa, A.S. Umans, O.M. Yaghi, E.N. Wang, Water harvesting from air with metal-organic frameworks powered by natural sunlight, Science 356 (2017) 430–434.

[15]

X. Zhao, L. Pei, Y.-N. Zhang, H. Huang, X. Zheng, B. Liu, M. Tong, Effective and irreversible removal of radioactive barium ions in MOF-808 framework functionalized sulfonic acid groups, Green Chem. Eng. 3 (2022) 405–412.

[16]

P.-L. Wang, L.-H. Xie, E.A. Joseph, J.-R. Li, X.-O. Su, H.-C. Zhou, Metal-organic frameworks for food safety, Chem. Rev. 119 (2019) 10638–10690.

[17]
Frameworks for commercial success, Nat. Chem. 8 (2016) 987.
[18]

S. Wang, C. Serre, Toward green production of water-stable metal-organic frameworks based on high-valence metals with low toxicities, ACS Sustain. Chem. Eng. 7 (2019) 11911–11927.

[19]

S. Dai, F. Nouar, S. Zhang, A. Tissot, C. Serre, One-step room-temperature synthesis of metal(Ⅳ) carboxylate metal—organic frameworks, Angew. Chem. Int. Ed. 60 (2020) 4282–4288.

[20]

M. Sánchez-Sánchez, N. Getachew, K. Díaz, M. Díaz-García, Y. Chebude, I. Díaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources, Green Chem. 17 (2015) 1500–1509.

[21]

X.-J. Kong, J.-R. Li, An overview of metal–organic frameworks for green chemical engineering, Engineering (2021), https://doi.org/10.1016/j.eng.2021.07.001.

[22]

D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron 64 (2008) 8553–8557.

[23]

Z. Zhao, H. Li, K. Zhao, L. Wang, X. Gao, Microwave-assisted synthesis of MOFs: Rational design via numerical simulation, Chem. Eng. J. 428 (2022) 131006.

[24]

D. Prat, A. Wells, J. Hayler, H. Sneddon, C.R. McElroy, S. Abou-Shehada, P.J. Dunn, CHEM21 selection guide of classical- and less classical-solvents, Green Chem. 18 (2016) 288–296.

[25]

K. Uzarevic, T.C. Wang, S.-Y. Moon, A.M. Fidelli, J.T. Hupp, O.K. Farha, T. Friscic, Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks, Chem. Commun. 52 (2016) 2133–2136.

[26]

D. Morelli Venturi, F. Campana, F. Marmottini, F. Costantino, L. Vaccaro, Extensive screening of green solvents for safe and sustainable UiO-66 synthesis, ACS Sustain. Chem. Eng. 8 (2020) 17154–17164.

[27]

S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, K.-H. Kim, Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications, Coord. Chem. Rev. 420 (2020) 213407.

[28]

C. Avci-Camur, J. Perez-Carvajal, I. Imaz, D. Maspoch, Metal acetylacetonates as a source of metals for aqueous synthesis of metal-organic frameworks, ACS Sustain. Chem. Eng. 6 (2018) 14554–14560.

[29]

H. Reinsch, B. Bueken, F. Vermoortele, I. Stassen, A. Lieb, K.P. Lillerud, D. De Vos, Green synthesis of zirconium-MOFs, CrystEngComm 17 (2015) 4070–4074.

[30]

A.M. Fidelli, B. Karadeniz, A.J. Howarth, I. Huskic, L.S. Germann, I. Halasz, M. Etter, S.Y. Moon, R.E. Dinnebier, V. Stilinovic, O.K. Farha, T. Friščić, K. Užarević, Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks, Chem. Commun. 54 (2018) 6999–7002.

[31]

J.J. De Yoreo, P.U. Gilbert, N.A. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Colfen, P.M. Dove, Crystallization by particle attachment in synthetic, biogenic, and geologic environments, Science 349 (2015) aaa6760.

[32]

M. Kumar, M.K. Choudhary, J.D. Rimer, Transient modes of zeolite surface growth from 3D gel-like islands to 2D single layers, Nat. Commun. 9 (2018) 2129.

[33]
J.V. Parambil, J.Y.Y. Heng, Seeding in crystallisation, in: K.J. Roberts, R. Docherty, R. Tamura (Eds.), Engineering Crystallography: from Molecule to Crystal to Functional Form, Springer Netherlands, Dordrecht, 2017, pp. 235–245.
[34]

K. Itabashi, Y. Kamimura, K. Iyoki, A. Shimojima, T. Okubo, A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent, J. Am. Chem. Soc. 134 (2012) 11542–11549.

[35]

A. Cacciuto, S. Auer, D. Frenkel, Onset of heterogeneous crystal nucleation in colloidal suspensions, Nature 428 (2004) 404–406.

[36]

Y. Xia, K.D. Gilroy, H.-C. Peng, X. Xia, Seed-mediated growth of colloidal metal nanocrystals, Angew. Chem. Int. Ed. 56 (2017) 60–95.

[37]

H.-Q. Xu, K. Wang, M. Ding, D. Feng, H.-L. Jiang, H.-C. Zhou, Seed-mediated synthesis of metal-organic frameworks, J. Am. Chem. Soc. 138 (2016) 5316–5320.

[38]

H.-H. He, L.-Y. Li, Y. Liu, M. Kassymova, D.-D. Li, L.-L. Zhang, H.-L. Jiang, Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles, Nano Res. 14 (2021) 444–449.

[39]

C. Qiu, J. Wang, H. Zhang, Y. Qin, X. Xu, Z. Jin, Novel approach with controlled nucleation and growth for green synthesis of size-controlled cyclodextrin-based metal-organic frameworks based on short-chain starch nanoparticles, J. Agric. Food Chem. 66 (2018) 9785–9793.

[40]

L. Feng, K.-Y. Wang, T.-H. Yan, H.-C. Zhou, Seed-mediated evolution of hierarchical metal–organic framework quaternary superstructures, Chem. Sci. 11 (2020) 1643–1648.

[41]

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J. 10 (2004) 1373–1382.

[42]

M. Kruger, A.K. Inge, H. Reinsch, Y.H. Li, M. Wahiduzzaman, C.H. Lin, S.L. Wang, G. Maurin, N. Stock, Polymorphous Al-MOFs based on V-shaped linker molecules: synthesis, properties, and in situ investigation of their crystallization, Inorg. Chem. 56 (2017) 5851–5862.

[43]

T. Loiseau, C. Mellot-Draznieks, H. Muguerra, G. Férey, M. Haouas, F. Taulelle, Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O, C. R. Chim. 8 (2005) 765–772.

[44]

M.J. Katz, Z.J. Brown, Y.J. Colon, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun. 49 (2013) 9449–9451.

[45]

F. Yang, H.-L. Huang, X.-Y. Wang, F. Li, Y.-H. Gong, C.-L. Zhong, J.-R. Li, Proton conductivities in functionalized UiO-66: tuned properties, thermogravimetry mass, and molecular simulation analyses, Cryst. Growth Des. 15 (2015) 5827–5833.

[46]

H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136 (2014) 4369–4381.

[47]

H. Reinsch, M.A. van der Veen, B. Gil, B. Marszalek, T. Verbiest, D. de Vos, N. Stock, Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs, Chem. Mater. 25 (2012) 17–26.

[48]

L.-H. Xie, X.-M. Liu, T. He, J.-R. Li, Metal-organic frameworks for the capture of trace aromatic volatile organic compounds, Inside Chem. 4 (2018) 1911–1927.

[49]

B. Wang, X.-L. Lv, D. Feng, L.-H. Xie, J. Zhang, M. Li, Y. Xie, J.-R. Li, H.-C. Zhou, Highly stable zr(Ⅳ)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water, J. Am. Chem. Soc. 138 (2016) 6204–6216.

[50]

J. Lv, Q. Chen, J.-H. Liu, H.-S. Yang, P. Wang, J. Yu, Y. Xie, Y.-F. Wu, J.-R. Li, Effective removal of clenbuterol and ractopamine from water with a stable Al(Ⅲ)-based metal-organic framework, Inorg. Chem. 60 (2021) 1814–1822.

[51]

G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040–2042.

[52]

J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850–13851.

[53]

D. Lv, Y. Wu, J. Chen, Y. Tu, Y. Yuan, H. Wu, Y. Chen, B. Liu, H. Xi, Z. Li, Q. Xia, Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane, AlChE J. 66 (2020) e16287.

[54]

D. Lenzen, P. Bendix, H. Reinsch, D. Frohlich, H. Kummer, M. Mollers, P.P.C. Hugenell, R. Glaser, S. Henninger, N. Stock, Scalable green synthesis and full-scale test of the metal-organic framework CAU-10-H for use in adsorption-driven chillers, Adv. Mater. 30 (2018) 1705869.

[55]

S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology, Chem. Commun. 46 (2010) 7700–7702.

[56]

A.M. Ploskonka, S.E. Marzen, J.B. DeCoste, Facile synthesis and direct activation of zirconium based metal–organic frameworks from acetone, Ind. Eng. Chem. Res. 56 (2017) 1478–1484.

[57]

B.L. Bonnett, E.D. Smith, M. De La Garza, M. Cai, J.V. Haag IV, J.M. Serrano, H.D. Cornell, B. Gibbons, S.M. Martin, A.J. Morris, PCN-222 metal–organic framework nanoparticles with tunable pore size for nanocomposite reverse osmosis membranes, ACS Appl. Mater. Interfaces 12 (2020) 15765–15773.

[58]

V. Agostoni, P. Horcajada, M. Noiray, M. Malanga, A. Aykaç, L. Jicsinszky, A. Vargas-Berenguel, N. Semiramoth, S. Daoud-Mahammed, V. Nicolas, A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles, Sci. Rep. 5 (2015) 7925.

Green Chemical Engineering
Pages 64-72
Cite this article:
An H-T, Zhang X, Dong C, et al. Seed-aided green synthesis of metal-organic frameworks in water. Green Chemical Engineering, 2023, 4(1): 64-72. https://doi.org/10.1016/j.gce.2022.04.004

311

Views

13

Downloads

19

Crossref

17

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 05 February 2022
Revised: 09 April 2022
Accepted: 26 April 2022
Published: 30 April 2022
© 2022 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return