Journal Home > Volume 15 , Issue 7

The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health. The specific sensing of antibiotics with different toxicity levels is of high challenge, and mainly relies on expensive, time-consuming, and complex instruments. To realize specific sensing by rapid and handy optical sensors, a metal-organic framework (MOF) based dual sensor system is herein developed using two MOF materials BUT-128 and BUT-129 with high sensing selectivity and sensitivity. BUT-128 and BUT-129 exhibit the lowest limit of detection (LOD) towards chloramphenicol and furazolidone among reported MOF sensors. The corresponding dual sensor system with enriched signal readouts realized specific sensing of the strictly forbidden antibiotics (chloramphenicol and nitrofurans) from other regulated veterinary drugs including thiamphenicol, a structural analog of chloramphenicol. Besides, the strategy of this work is expected to flourish the development of optical sensors with high specificity for environment and food safety purposes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Specific sensing of antibiotics with metal-organic frameworks based dual sensor system

Show Author's information Yan-Long ZhaoQiang ChenJie LvMing-Ming XuXin Zhang( )Jian-Rong Li( )
Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

Abstract

The illegal usage of antibiotics as veterinary drugs is an increasing threat for human health. The specific sensing of antibiotics with different toxicity levels is of high challenge, and mainly relies on expensive, time-consuming, and complex instruments. To realize specific sensing by rapid and handy optical sensors, a metal-organic framework (MOF) based dual sensor system is herein developed using two MOF materials BUT-128 and BUT-129 with high sensing selectivity and sensitivity. BUT-128 and BUT-129 exhibit the lowest limit of detection (LOD) towards chloramphenicol and furazolidone among reported MOF sensors. The corresponding dual sensor system with enriched signal readouts realized specific sensing of the strictly forbidden antibiotics (chloramphenicol and nitrofurans) from other regulated veterinary drugs including thiamphenicol, a structural analog of chloramphenicol. Besides, the strategy of this work is expected to flourish the development of optical sensors with high specificity for environment and food safety purposes.

Keywords: metal-organic frameworks, antibiotics, specific sensing, dual sensor, fluorescence quenching

References(60)

1

Hou, S. L.; Dong, J.; Jiang, X. L.; Jiao, Z. H.; Wang, C. M.; Zhao, B. Interpenetration-dependent luminescent probe in indium-organic frameworks for selectively detecting nitrofurazone in water. Anal. Chem. 2018, 90, 1516–1519.

2

Wang, B.; Liu, J. H.; Yu, J. M.; Lv, J.; Dong, C.; Li, J. R. Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J. Hazard. Mater. 2020, 382, 121018.

3

Wang, P. L.; Xie, L. H.; Joseph, E. A.; Li, J. R.; Su, X. O.; Zhou, H. C. Metal-organic frameworks for food safety. Chem. Rev. 2019, 119, 10638–10690.

4

Moros, J.; Laserna, J. J. New raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Anal. Chem. 2011, 83, 6275–6285.

5

Li, Y. B.; Wang, L.; Zhao, L. T.; Li, M.; Wen, Y. M. An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of chloramphenicol in milk. Food Chem. 2021, 357, 129769.

6

Moudgil, P.; Bedi, J. S.; Aulakh, R. S.; Gill, J. P. S.; Kumar, A. Validation of HPLC multi-residue method for determination of fluoroquinolones, tetracycline, sulphonamides and chloramphenicol residues in bovine milk. Food Anal. Methods 2019, 12, 338–346.

7

EFSA panel on contaminants in the food chain (CONTAM). Scientific opinion on nitrofurans and their metabolites in food. EFSA J. 2015, 13, 4140.

8

Roerdink, A. R.; Aldstadt III, J. H. Sensitive method for the determination of roxarsone using solid-phase microextraction with multi-detector gas chromatography. J. Chromatogr. A 2004, 1057, 177–183.

9

Iglesias-García, I.; Barriada-Pereira, M.; González-Castro, M. J.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Development of an analytical method based on microwave-assisted extraction and solid phase extraction cleanup for the determination of organochlorine pesticides in animal feed. Anal. Bioanal. Chem 2008, 391, 745–752.

10

Benito-Peña, E.; Urraca, J. L.; Moreno-Bondi, M. C. Quantitative determination of penicillin V and amoxicillin in feed samples by pressurised liquid extraction and liquid chromatography with ultraviolet detection. J. Pharm. Biomed. Anal. 2009, 49, 289–294.

11

Blasco, C.; Di Corcia, A.; Picó, Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. Food Chem. 2009, 116, 1005–1012.

12

Tabrizchi, M.; ILbeigi, V. Detection of explosives by positive corona discharge ion mobility spectrometry. J. Hazard. Mater. 2010, 176, 692–696.

13

Khlebtsov, B. N.; Bratashov, D. N.; Byzova, N. A.; Dzantiev, B. B.; Khlebtsov, N. G. SERS-based lateral flow immunoassay of troponinⅠby using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420.

14

Han, M. M.; Gong, L.; Wang, J. Y.; Zhang, X. P.; Jin, Y. P.; Zhao, R. M.; Yang, C. J.; He, L. D.; Feng, X. Y.; Chen, Y. Q. An octuplex lateral flow immunoassay for rapid detection of antibiotic residues, aflatoxin M1 and melamine in milk. Sens. Actuators B: Chem. 2019, 292, 94–104.

15

Lan, M. H.; Zhao, S. J.; Wu, S. L.; Wei, X. F.; Fu, Y. Z.; Wu, J. J.; Wang, P. F.; Zhang, W. J. Optically tunable fluorescent carbon nanoparticles and their application in fluorometric sensing of copper ions. Nano Res. 2019, 12, 2576–2583.

16

Mandal, S.; Pal, J.; Subramanian, R.; Das, P. Amplified fluorescence of Mg2+ selective red-light emitting carbon dot in water and direct evaluation of creatine kinase activity. Nano Res. 2020, 13, 2770–2776.

17

Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

18

Du, S. Z.; Sun, Z.; Han, L.; Qing, M.; Luo, H. Q.; Li, N. B. Two 3d-4f metal-organic frameworks as fluorescent sensor array for the discrimination of phosphates based on different response patterns. Sens. Actuators B: Chem. 2020, 324, 128757.

19

Wong, S. F.; Khor, S. M. State-of-the-art of differential sensing techniques in analytical sciences. TrAC Trends Anal. Chem. 2019, 114, 108–125.

20

Lin, G.; Zhang, Y.; Zhang, L.; Wang, J. Q.; Tian, Y.; Cai, W.; Tang, S. G.; Chu, C. C.; Zhou, J. J.; Mi, P. et al. Metal-organic frameworks nanoswitch: Toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 2020, 13, 238–245.

21

Wang, J. H.; Song, B.; Tang, J. L.; Hu, G. Y.; Wang, J. Y.; Cui, M. Y.; He, Y. Multi-modal anti-counterfeiting and encryption enabled through silicon-based materials featuring pH-responsive fluorescence and room-temperature phosphorescence. Nano Res. 2020, 13, 1614–1619.

22

Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

23

Cui, Y. J.; Zhang, J.; He, H. J.; Qian, G. D. Photonic functional metal-organic frameworks. Chem. Soc. Rev. 2018, 47, 5740–5785.

24

Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32, 2002914.

25

Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

26

Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

27

Li, H. Y.; Zhao, S. N.; Zang, S. Q.; Li, J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401.

28

Li, J. L.; Yuan, S.; Qin, J. S.; Pang, J. D.; Zhang, P.; Zhang, Y. M.; Huang, Y. Y.; Drake, H. F.; Liu, W. R.; Zhou, H. C. Stepwise assembly of turn-on fluorescence sensors in multicomponent metal-organic frameworks for in vitro cyanide detection. Angew. Chem., Int. Ed. 2020, 59, 9319–9323.

29

Min, J.; Qu, X. L.; Yan, B. Tb post-functionalized La(III) metal organic framework hybrid probe for simple and highly sensitive detection of acetaldehyde. Sens. Actuators B: Chem. 2019, 300, 126985.

30

Zhao, S. N.; Li, L. J.; Song, X. Z.; Zhu, M.; Hao, Z. M.; Meng, X.; Wu, L. L.; Feng, J.; Song, S. Y.; Wang, C. et al. Lanthanide ion codoped emitters for tailoring emission trajectory and temperature sensing. Adv. Funct. Mater. 2015, 25, 1463–1469.

31

Han, L.; Pham, T.; Zhuo, M. J.; Forrest, K. A.; Suepaul, S.; Space, B.; Zaworotko, M. J.; Shi, W.; Chen, Y.; Cheng, P. et al. Molecular sieving and direct visualization of CO2 in binding pockets of an ultramicroporous lanthanide metal-organic framework platform. ACS Appl. Mater. Interfaces 2019, 11, 23192–23197.

32

Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Titanium-carboxylate metal-organic framework based on an unprecedented Ti-oxo chain cluster. Angew. Chem., Int. Ed. 2018, 57, 14852–14856.

33

Son, H. J.; Jin, S. Y.; Patwardhan, S.; Wezenberg, S. J.; Jeong, N. C.; So, M.; Wilmer, C. E.; Sarjeant, A. A.; Schatz, G. C.; Snurr, R. Q. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 862–869.

34

Yu, J. R.; Park, J.; Van Wyk, A.; Rumbles, G.; Deria, P. Excited-state electronic properties in Zr-based metal-organic frameworks as a function of a topological network. J. Am. Chem. Soc. 2018, 140, 10488–10496.

35

Wang, H. S. Metal-organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155.

36

Shustova, N. B.; Cozzolino, A. F.; Dincă, M. Conformational locking by design: Relating strain energy with luminescence and stability in rigid metal-organic frameworks. J. Am. Chem. Soc. 2012, 134, 19596–19599.

37

Wei, Z. W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald Jr, R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D. W.; Omary, M. A.; Zhou, H. C. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. J. Am. Chem. Soc. 2014, 136, 8269–8276.

38

Yu, J. C.; Cui, Y. J.; Xu, H.; Yang, Y.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nat. Commun. 2013, 4, 2719.

39

Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E. B. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv. Mater. 2007, 19, 1693–1696.

40

Lv, S. W.; Liu, J. M.; Li, C. Y.; Zhao, N.; Wang, Z. H.; Wang, S. A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122111.

41

Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J. A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. Angew. Chem., Int. Ed. 2009, 48, 2334–2338.

42

Nagarkar, S. S.; Desai, A. V.; Ghosh, S. K. A fluorescent metal-organic framework for highly selective detection of nitro explosives in the aqueous phase. Chem. Commun. 2014, 50, 8915–8918.

43

Wang, B.; Lv, X. L.; Feng, D. W.; Xie, L. H.; Zhang, J.; Li, M.; Xie, Y. B.; Li, J. R.; Zhou, H. C. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water. J. Am. Chem. Soc. 2016, 138, 6204–6216.

44

Wang, J.; Li, D. Q.; Ye, Y. X.; Qiu, Y.; Liu, J. W.; Huang, L.; Liang, B.; Chen, B. L. A fluorescent metal-organic framework for food real-time visual monitoring. Adv. Mater. 2021, 33, 2008020.

45

Wang, B.; Wang, P. L.; Xie, L. H.; Lin, R. B.; Lv, J.; Li, J. R.; Chen, B. L. A stable zirconium based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules. Nat. Commun. 2019, 10, 3861–3869.

46

Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y. P.; Chao, H. Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.

47

Gai, S.; Zhang, J.; Fan, R. Q.; Xing, K.; Chen, W.; Zhu, K.; Zheng, X. B.; Wang, P.; Fang, X. K.; Yang, Y. L. Highly stable zinc-based metal-organic frameworks and corresponding flexible composites for removal and detection of antibiotics in water. ACS Appl. Mater. Interfaces 2020, 12, 8650–8662.

48

Goswami, R.; Mandal, S. C.; Seal, N.; Pathak, B.; Neogi, S. Antibiotic-triggered reversible luminescence switching in amine-grafted mixed-linker MOF: Exceptional turn-on and ultrafast nanomolar detection of sulfadiazine and adenosine monophosphate with molecular keypad lock functionality. J. Mater. Chem. A 2019, 7, 19471–19484.

49

Ying, Y. M.; Tao, C. L.; Yu, M. X.; Xiong, Y.; Guo, C. R.; Liu, X. G.; Zhao, Z. J. In situ encapsulation of pyridine-substituted tetraphenylethene cations in metal-organic framework for the detection of antibiotics in aqueous medium. J. Mater. Chem. C 2019, 7, 8383–8388.

50

Zhao, D.; Liu, X. H.; Zhao, Y.; Wang, P.; Liu, Y.; Azam, M.; Al-Resayes, S. I.; Lu, Y.; Sun, W. Y. Luminescent Cd(II)-organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics. J. Mater. Chem. A 2017, 5, 15797–15807.

51

Panigrahi, S. K.; Mishra, A. K. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photochem. Photobiol. C: Photochem. Rev. 2019, 41, 100318.

52

Wu, L. L.; Huang, C. S.; Emery, B. P.; Sedgwick, A. C.; Bull, S. D.; He, X. P.; Tian, H.; Yoon, J.; Sessler, J. L.; James, T. D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139.

53

Jasuja, H.; Huang, Y. G.; Walton, K. S. Adjusting the stability of metal-organic frameworks under humid conditions by ligand functionalization. Langmuir 2012, 28, 16874–16880.

54

He, C. T.; Jiang, L.; Ye, Z. M.; Krishna, R.; Zhong, Z. S.; Liao, P. Q.; Xu, J. Q.; Ouyang, G. F.; Zhang, J. P.; Chen, X. M. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J. Am. Chem. Soc. 2015, 137, 7217–7223.

55

Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L. et al. Piezochromic luminescence based on the molecular aggregation of 9,10-Bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem., Int. Ed. 2012, 51, 10782–10785.

56

Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881–2885.

57

Yang, Y.; Zhao, L. N.; Sun, M. G.; Wei, P. P.; Li, G. M.; Li, Y. X. Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative. Dyes Pigm. 2020, 180, 108444.

58

Fan, L. M.; Wang, F.; Zhao, D. S.; Peng, Y. X.; Deng, Y. X.; Luo, Y. W.; Zhang, X. T. A self-penetrating and chemically stable zinc (ii)-organic framework as multi-responsive chemo-sensor to detect pesticide and antibiotics in water. Appl. Organomet. Chem. 2020, 34, e5960.

59

Li, Q. Q.; Wen, M. J.; Zhang, Y. S.; Guo, Z. S.; Bai, X.; Song, J. X.; Liu, P.; Wang, Y. Y.; Li, J. L. Multiple fluorescence response behaviors towards antibiotics and bacteria based on a highly stable Cd-MOF. J. Hazard. Mater. 2022, 423, 127132.

60

Su, P. C.; Zhang, A. R.; Yu, L.; Ge, H. W.; Wang, N.; Huang, S. Y.; Ai, Y. J.; Wang, X. K.; Wang, S. H. Dual-functional UiO-type metal-organic frameworks for the sensitive sensing and effective removal of nitrofurans from water. Sens. Actuators B: Chem. 2022, 350, 130865.

File
12274_2022_4306_MOESM1_ESM.pdf (5.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 December 2021
Revised: 03 March 2022
Accepted: 08 March 2022
Published: 20 April 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 22038001, 51621003, and 22108007) and the Beijing Nova Program (No. Z211100002121094).

Return