Sort:
Open Access Topical Review Issue
Temperature field model in surface grinding: a comparative assessment
International Journal of Extreme Manufacturing 2023, 5 (4)
Published: 15 September 2023
Downloads:2

Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality. However, a significant technical challenge in grinding is the potential increase in temperature due to high specific energy, which can lead to surface thermal damage. Therefore, ensuring control over the surface integrity of workpieces during grinding becomes a critical concern. This necessitates the development of temperature field models that consider various parameters, such as workpiece materials, grinding wheels, grinding parameters, cooling methods, and media, to guide industrial production. This study thoroughly analyzes and summarizes grinding temperature field models. First, the theory of the grinding temperature field is investigated, classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source, depending on whether the heat source is uniform and continuous. Through this examination, a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived. Subsequently, various grinding thermal models are summarized, including models for the heat source distribution, energy distribution proportional coefficient, and convective heat transfer coefficient. Through comprehensive research, the most widely recognized, utilized, and accurate model for each category is identified. The application of these grinding thermal models is reviewed, shedding light on the governing laws that dictate the influence of the heat source distribution, heat distribution, and convective heat transfer in the grinding arc zone on the grinding temperature field. Finally, considering the current issues in the field of grinding temperature, potential future research directions are proposed. The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.

Research Article Issue
A non-surgical suturing strategy for rapid cardiac hemostasis
Nano Research 2023, 16 (1): 810-821
Published: 05 August 2022
Downloads:62

As the central organ of the human body, once the heart is damaged, it will cause devastating damage to the circulation system of the whole body, often leading to rapid death. Currently, the only treatment option to stop bleeding in penetrating cardiac injuries is surgical suturing, which is extremely complex and risky. In addition, it is difficult to implement this kind of treatment in battlefields with poor medical conditions. Therefore, there is an urgent need to develop an effective cardiac hemostasis strategy. In this work, we propose a two-step hemostasis strategy that can effectively stop bleeding for penetrating heart injuries. That is, cardiac hemostatic plug (CHP) is made from the nanocomposite (polylactic acid/gelatin/absorbable hemostatic particles, PLA/GEL/AHP) with high biosafety, excellent hemostatic performance, and degradability which is used to block cardiac bleeding, and then wound surface is sealed by in-situ electrospun medical glue fibers (N-octyl-2-cyanoacrylate, interfacial toughness: 221 ± 23 J·m−2), thus completing cardiac hemostasis (porcine heart with 1 cm diameter penetrating wound). The hemostasis process is simple and quick (< 2 min). In addition, it is worth mentioning that we have also proposed a new composite method based on solution blow spinning that is suitable for doping various functional particles, and the PLA/GEL/AHP composite nanofiber membrane prepared by this method is also a promising hemostatic material.

Research Article Issue
Reliable sensors based on graphene textile with negative resistance variation in three dimensions
Nano Research 2021, 14 (8): 2810-2818
Published: 25 February 2021
Downloads:25

The weft-knitted reduced graphene oxide (r-GO) textile that is made up of many conductive r-GO coated fibers was successfully prepared dependent on the electrospray deposition technique. Interestingly, the r-GO textile presents negative resistance variation not only in axial direction as the pressure increases but also in transverse direction as the lateral stretch increases which makes it has the advantage to fabricate the reliable sensors based on strain-resistance effect. The transverse-strain and pressure sensors based on the r-GO textiles all show the excellent sensing characteristics such as high sensitivity, reliability, and good durability, etc. The maximum gauge factors (GF) of the transverse-sensor are 27.1 and 153.5 in the x- and y-direction, respectively. And the practical detection range can up to 40% in the x-direction and 35% in the y-direction, respectively. The r-GO textile pressure sensor also shows high sensitivity for a broad pressure range that with a GF up to 716.8 kPa-1 for less than 4.5 kPa region and still has more sensitive pressure sensing characteristics even the pressure goes up to 14 kPa. Based on those good performances of r-GO textile sensors, its potential applications in human body states monitoring have been studied.

total 3