Journal Home > Volume 14 , Issue 8

The weft-knitted reduced graphene oxide (r-GO) textile that is made up of many conductive r-GO coated fibers was successfully prepared dependent on the electrospray deposition technique. Interestingly, the r-GO textile presents negative resistance variation not only in axial direction as the pressure increases but also in transverse direction as the lateral stretch increases which makes it has the advantage to fabricate the reliable sensors based on strain-resistance effect. The transverse-strain and pressure sensors based on the r-GO textiles all show the excellent sensing characteristics such as high sensitivity, reliability, and good durability, etc. The maximum gauge factors (GF) of the transverse-sensor are 27.1 and 153.5 in the x- and y-direction, respectively. And the practical detection range can up to 40% in the x-direction and 35% in the y-direction, respectively. The r-GO textile pressure sensor also shows high sensitivity for a broad pressure range that with a GF up to 716.8 kPa-1 for less than 4.5 kPa region and still has more sensitive pressure sensing characteristics even the pressure goes up to 14 kPa. Based on those good performances of r-GO textile sensors, its potential applications in human body states monitoring have been studied.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reliable sensors based on graphene textile with negative resistance variation in three dimensions

Show Author's information Wenpeng Han1( )Yijun Wu1He Gong1Linxin Liu1Junxiang Yan1,3Mengfei Li1Yunze Long1( )Guozhen Shen2( )
College of Physics, Qingdao University, Qingdao 266071, China
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Beijing National Laboratory for Condensed Matter physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

The weft-knitted reduced graphene oxide (r-GO) textile that is made up of many conductive r-GO coated fibers was successfully prepared dependent on the electrospray deposition technique. Interestingly, the r-GO textile presents negative resistance variation not only in axial direction as the pressure increases but also in transverse direction as the lateral stretch increases which makes it has the advantage to fabricate the reliable sensors based on strain-resistance effect. The transverse-strain and pressure sensors based on the r-GO textiles all show the excellent sensing characteristics such as high sensitivity, reliability, and good durability, etc. The maximum gauge factors (GF) of the transverse-sensor are 27.1 and 153.5 in the x- and y-direction, respectively. And the practical detection range can up to 40% in the x-direction and 35% in the y-direction, respectively. The r-GO textile pressure sensor also shows high sensitivity for a broad pressure range that with a GF up to 716.8 kPa-1 for less than 4.5 kPa region and still has more sensitive pressure sensing characteristics even the pressure goes up to 14 kPa. Based on those good performances of r-GO textile sensors, its potential applications in human body states monitoring have been studied.

Keywords: pressure sensor, reduced graphene oxide textile, transverse-strain sensor, negative resistance variation, human body states

References(45)

[1]
Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678-1698.
[2]
Nag, A.; Mitra, A.; Mukhopadhyay, S. C. Graphene and its sensor-based applications: A review. Sens. Actuators A-Phys. 2018, 270, 177-194.
[3]
Liu, H.; Li, Q. M.; Zhang, S. D.; Yin, R.; Liu, X. H.; He, Y. X.; Dai, K.; Shan, C. X.; Guo, J.; Liu, C. T. et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 2018, 6, 12121-12141.
[4]
Wang, D. R.; Zhang, Y. K.; Lu, X.; Ma, Z. J.; Xie, C.; Zheng, Z. J. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 2018, 47, 4611-4641.
[5]
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509-514.
[6]
Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.
[7]
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296-301.
[8]
Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795-801.
[9]
Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire- elastomer nanocomposite. ACS Nano 2014, 8, 5154-5163.
[10]
Guo, Y. N.; Gao, Z. Y.; Wang, X. X.; Sun, L.; Yan, X.; Yan, S. Y.; Long, Y. Z.; Han, W. P. A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline. RSC Adv. 2018, 8, 1078-1082.
[11]
Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.
[12]
Hua, Q. L.; Sun, J. L.; Liu, H. T.; Bao, R. R.; Yu, R. M.; Zhai, J. Y.; Pan, C. F.; Wang, Z. L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244.
[13]
Lee, J.; Kim, S.; Lee, J.; Yang, D.; Park, B. C.; Ryu, S.; Park, I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 2014, 6, 11932-11939.
[14]
Yu, G. F.; Yan, X.; Yu, M.; Jia, M. Y.; Pan, W.; He, X. X.; Han, W. P.; Zhang, Z. M.; Yu, L. M.; Long, Y. Z. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale 2016, 8, 2944-2950.
[15]
Ge, J.; Sun, L.; Zhang, F. R.; Zhang, Y.; Shi, L. A.; Zhao, H. Y.; Zhu, H. W.; Jiang, H. L.; Yu, S. H. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv. Mater. 2016, 28, 722-728.
[16]
Wang, Y.; Wang, L.; Yang, T. T.; Li, X.; Zang, X. B.; Zhu, M.; Wang, K. L.; Wu, D. H.; Zhu, H. W. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 2014, 24, 4666-4670.
[17]
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790-8795.
[18]
Yang, T. T.; Jiang, X.; Zhong, Y. J.; Zhao, X. L.; Lin, S. Y.; Li, J.; Li, X. M.; Xu, J. L.; Li, Z. H.; Zhu, H. W. A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2017, 2, 967-974.
[19]
Tewari, A.; Gandla, S.; Bohm, S.; McNeill, C. R.; Gupta, D. Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications. Appl. Phys. Lett. 2018, 113, 084101.
[20]
Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable piezoresistive graphene- nanocellulose nanopaper for strain sensors. Adv. Mater. 2014, 26, 2022-2027.
[21]
Zhang, M. C.; Wang, C. Y.; Wang, Q.; Jian, M. Q.; Zhang, Y. Y. Sheath-core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl. Mater. Interfaces 2016, 8, 20894-20899.
[22]
Wang, X. N.; Qiu, Y. F.; Cao, W. W.; Hu, P. A. Highly stretchable and conductive core-sheath chemical vapor deposition graphene fibers and their applications in safe strain sensors. Chem. Mater. 2015, 27, 6969-6975.
[23]
Cai, G. M.; Yang, M. Y.; Xu, Z. L.; Liu, J. G.; Tang, B.; Wang, X. G. Flexible and wearable strain sensing fabrics. Chem. Eng. J. 2017, 325, 396-403.
[24]
Yang, Z.; Pang, Y.; Han, X. L.; Yang, Y. F.; Ling, J.; Jian, M. Q.; Zhang, Y. Y.; Yang, Y.; Ren, T. L. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018, 12, 9134-9141.
[25]
Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.
[26]
Liu, H.; Li, Y. L.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Yan, X. R.; Guo, J.; Guo, Z. H. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 2016, 4, 157-166.
[27]
Tian, H.; Shu, Y.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699-705.
[28]
Yang, Y. F.; Tao, L. Q.; Pang, Y.; Tian, H.; Ju, Z. Y.; Wu, X. M.; Yang, Y.; Ren, T. L. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale 2018, 10, 11524-11530.
[29]
Yang, J. Y.; Ye, Y. S.; Li, X. P.; Lü, X. Z.; Chen, R. J. Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Compos. Sci. Technol. 2018, 164, 187-194.
[30]
Zhu, S. E.; Ghatkesar, M. K.; Zhang, C.; Janssen, G. C. A. M. Graphene based piezoresistive pressure sensor. Appl. Phys. Lett. 2013, 102, 161904.
[31]
Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7-14.
[32]
Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl. Phys. Lett. 2017, 110, 123508.
[33]
Ge, G.; Cai, Y. C.; Dong, Q. C.; Zhang, Y. Z.; Shao, J. J.; Huang, W.; Dong, X. C. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 2018, 10, 10033-10040.
[34]
Ai, Y. F.; Hsu, T. H.; Wu, D. C.; Lee, L.; Chen, J. H.; Chen, Y. Z.; Wu, S. C.; Wu, C.; Wang, Z. M.; Chueh, Y. L. An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene Ball@reduced graphene-oxide core-shell nanoparticles. J. Mater. Chem. C 2018, 6, 5514-5520.
[35]
Pang, Y.; Tian, H.; Tao, L. Q.; Li, Y. X.; Wang, X. F.; Deng, N. Q.; Yang, Y.; Ren, T. L. Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 2016, 8, 26458-26462.
[36]
Pang, Y.; Yang, Z.; Han, X. L.; Jian, J. M.; Li, Y. X.; Wang, X. F.; Qiao, Y. C.; Yang, Y.; Ren, T. L. Multifunctional mechanical sensors for versatile physiological signal detection. ACS Appl. Mater. Interfaces 2018, 10, 44173-44182.
[37]
Yan, J. X.; Leng, Y. C.; Guo, Y. N.; Wang, G. Q.; Gong, H.; Guo, P. Z.; Tan, P. H.; Long, Y. Z.; Liu, X. L.; Han, W. P. Highly conductive graphene paper with vertically aligned reduced graphene oxide sheets fabricated by improved electrospray deposition technique. ACS Appl. Mater. Interfaces 2019, 11, 10810-10817.
[38]
Lee, Y. H.; Kim, Y.; Lee, T. I.; Lee, I.; Shin, J.; Lee, H. S.; Kim, T. S.; Choi, J. W. Anomalous stretchable conductivity using an engineered tricot weave. ACS Nano 2015, 9, 12214-12223.
[39]
Chen, D.; Jiang, K.; Huang, T. T.; Shen, G. Z. Recent advances in fiber supercapacitors: Materials, device configurations, and applications. Adv. Mater. 2020, 32, 1901806.
[40]
Ren, J. S.; Wang, C. X.; Zhang, X.; Carey, T.; Chen, K. L.; Yin, Y. J.; Torrisi, F. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon 2017, 111, 622-630.
[41]
Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano 2015, 9, 3887-3895.
[42]
Gong, H.; Li, M. F.; Yan, J. X.; Lin, M. L.; Liu, X. L.; Sun, B.; Tan, P. H.; Long, Y. Z.; Han, W. P. Highly conductive, flexible and functional multi-channel graphene microtube fabricated by electrospray deposition technique. J. Mater. Sci. 2019, 54, 14378-14387.
[43]
Liang, K. L.; Li, M. F.; Hao, Y. K.; Yan, W. G.; Cao, M. H.; Fan, S. Q.; Han, W. P.; Su, J. Reduced graphene oxide with 3D interconnected hollow channel architecture as high-performance anode for Li/Na/K-Ion storage. Chem. Eng. J. 2020, 394, 124956.
[44]
Li, M. F.; Gong, H.; Yan, J. X.; Wu, Y. J.; Leng, Y. C.; Liu, X. L.; Long, Y. Z.; Han, W. P. Fabrication of thermally reduced graphene micro-tube and its electronic transport properties. Phys. E: Low-Dimens. Syst. Nanostruct. 2020, 122, 114169.
[45]
Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822-1873.
File
12274_2021_3291_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 November 2020
Revised: 02 December 2020
Accepted: 08 December 2020
Published: 25 February 2021
Issue date: August 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 11604173, 61625404, 61888102, and 51973100), the China Postdoctoral Science Foundation (No. 2017M612195), State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (No. RZ2000003334), and fund from the National Key Research Development Project (No. 2019YFC0121402).

Return