Journal Home > Volume 16 , Issue 1

As the central organ of the human body, once the heart is damaged, it will cause devastating damage to the circulation system of the whole body, often leading to rapid death. Currently, the only treatment option to stop bleeding in penetrating cardiac injuries is surgical suturing, which is extremely complex and risky. In addition, it is difficult to implement this kind of treatment in battlefields with poor medical conditions. Therefore, there is an urgent need to develop an effective cardiac hemostasis strategy. In this work, we propose a two-step hemostasis strategy that can effectively stop bleeding for penetrating heart injuries. That is, cardiac hemostatic plug (CHP) is made from the nanocomposite (polylactic acid/gelatin/absorbable hemostatic particles, PLA/GEL/AHP) with high biosafety, excellent hemostatic performance, and degradability which is used to block cardiac bleeding, and then wound surface is sealed by in-situ electrospun medical glue fibers (N-octyl-2-cyanoacrylate, interfacial toughness: 221 ± 23 J·m−2), thus completing cardiac hemostasis (porcine heart with 1 cm diameter penetrating wound). The hemostasis process is simple and quick (< 2 min). In addition, it is worth mentioning that we have also proposed a new composite method based on solution blow spinning that is suitable for doping various functional particles, and the PLA/GEL/AHP composite nanofiber membrane prepared by this method is also a promising hemostatic material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A non-surgical suturing strategy for rapid cardiac hemostasis

Show Author's information Yuan Gao1,§Jun Zhang1,§Nan Cheng2,§Zhong Liu1Yuan-Bin Wu2Qian-Qian Zhou3Chen-Yan Li3Miao Yu1Seeram Ramakrishna4Rong Wang2( )Yun-Ze Long1,5( )
Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
Department of Adult Cardiac Surgery, the Sixth Medical Center of PLA General Hospital, Beijing 100084, China
Institute of Health Service and Transfusion Medicine, Beijing 100850, China
Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
State Key Laboratory of Bio-Fibers & Eco-Textiles, Qingdao 266071, China

§ Yuan Gao, Jun Zhang, and Nan Cheng contributed equally to this work.

Abstract

As the central organ of the human body, once the heart is damaged, it will cause devastating damage to the circulation system of the whole body, often leading to rapid death. Currently, the only treatment option to stop bleeding in penetrating cardiac injuries is surgical suturing, which is extremely complex and risky. In addition, it is difficult to implement this kind of treatment in battlefields with poor medical conditions. Therefore, there is an urgent need to develop an effective cardiac hemostasis strategy. In this work, we propose a two-step hemostasis strategy that can effectively stop bleeding for penetrating heart injuries. That is, cardiac hemostatic plug (CHP) is made from the nanocomposite (polylactic acid/gelatin/absorbable hemostatic particles, PLA/GEL/AHP) with high biosafety, excellent hemostatic performance, and degradability which is used to block cardiac bleeding, and then wound surface is sealed by in-situ electrospun medical glue fibers (N-octyl-2-cyanoacrylate, interfacial toughness: 221 ± 23 J·m−2), thus completing cardiac hemostasis (porcine heart with 1 cm diameter penetrating wound). The hemostasis process is simple and quick (< 2 min). In addition, it is worth mentioning that we have also proposed a new composite method based on solution blow spinning that is suitable for doping various functional particles, and the PLA/GEL/AHP composite nanofiber membrane prepared by this method is also a promising hemostatic material.

Keywords: electrospinning, nanocomposite, heart, cardiac hemostasis, solution blow spinning

References(44)

[1]

Pfeifer, R.; Tarkin, I. S.; Rocos, B.; Pape, H. C. Patterns of mortality and causes of death in polytrauma patients—Has anything changed? Injury 2009, 40, 907–911.

[2]

Hsu, B. B.; Conway, W.; Tschabrunn, C. M.; Mehta, M.; Perez-Cuevas, M. B.; Zhang, S. G.; Hammond P. T. Clotting mimicry from robust hemostatic bandages based on self-assembling peptides. ACS Nano. 2015, 9, 9394–9406.

[3]

Turan, A. A.; Karayel, F. A.; Akyildiz, E.; Pakis, I.; Uzun, I.; Gurpinar, K.; Atılmıs, U.; Kir, Z. Cardiac injuries caused by blunt trauma: An autopsy based assessment of the injury pattern. J. Forensic Sci. 2010, 55, 82–84.

[4]

Hong, Y.; Zhou, F. F.; Hua, Y. J.; Zhang, X. Z.; Ni, C. Y.; Pan, D. H.; Zhang, Y. Q.; Jiang, D. M.; Yang, L.; Lin, Q. N. et al. A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 2019, 10, 2060.

[5]

Kang, N.; Hsee, L.; Rizoli, S.; Alison, P. Penetrating cardiac injury: Overcoming the limits set by Nature. Injury 2009, 40, 919–927.

[6]

Isaza-Restrepo, A.; Bolívar-Sáenz, D. J.; Tarazona-Lara, M.; Tovar, J. R. Penetrating cardiac trauma: Analysis of 240 cases from a hospital in Bogota, Colombia. World J. Emerg. Surg. 2017, 12, 26.

[7]

Saini, A.; Serrano, K.; Koss, K.; Unsworth, L. D. Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptide-based hydrogels. Acta Biomater. 2016, 31, 71–79.

[8]

Wei, S. D.; Chen, F. P.; Geng, Z.; Cui, R. H.; Zhao, Y. J.; Liu, C. S. Self-assembling RATEA16 peptide nanofiber designed for rapid hemostasis. J. Mater. Chem. B. 2020, 8, 1897–1905.

[9]

Hickman, D. A.; Pawlowski, C. L.; Sekhon, U. D. S.; Marks, J.; Sen Gupta, A. Biomaterials and advanced technologies for hemostatic management of bleeding. Adv. Mater. 2018, 30, 1804635.

[10]

Yu, L. S.; Shang, X. Q.; Chen, H.; Xiao, L. P.; Zhu, Y. H.; Fan, J. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 2019, 10, 1932.

[11]

Sezer, U. A.; Kocer, Z.; Sahin, İ.; Aru, B.; Demirel, G. Y.; Sezer, S. Oxidized regenerated cellulose cross-linked gelatin microparticles for rapid and biocompatible hemostasis: A versatile cross-linking agent. Carbohydr. Polym. 2018, 200, 624–632.

[12]

Huang, Y.; Bai, L.; Yang, Y. T.; Yin, Z. H.; Guo, B. L. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 2022, 608, 2278–2289.

[13]

Wang, X. X.; Liu, Q.; Sui, J. X.; Ramakrishna, S.; Yu, M.; Zhou, Y.; Jiang, X. Y.; Long, Y. Z. Recent advances in hemostasis at the nanoscale. Adv. Healthc. Mater. 2019, 8, 1900823.

[14]

Daud, A.; Kaur, B.; McClure, G. R.; Belley-Cote, E. P.; Harlock, J.; Crowther, M.; Whitlock, R. P. Fibrin and thrombin sealants in vascular and cardiac surgery: A systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 469–478.

[15]

Orlandini, B.; Schepis, T.; Tringali, A.; Familiari, P.; Boškoski, I.; De Andreis, F. B.; Perri, V.; Costamagna, G. Fibrin glue injection: Rescue treatment for refractory post-sphincterotomy and post-papillectomy bleedings. Dig. Endosc. 2021, 33, 815–821.

[16]

Lang, N.; Pereira, M. J.; Lee, Y.; Friehs, I.; Vasilyev, N. V.; Feins, E. N.; Ablasser, K.; O’Cearbhaill, E. D.; Xu, C. J.; Fabozzo, A. et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects. Sci. Transl. Med. 2014, 6, 218ra6.

[17]

Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381.

[18]

Han, W.; Zhou, B.; Yang, K.; Xiong, X.; Luan, S. F.; Wang, Y.; Xu, Z.; Lei, P.; Luo, Z. S.; Gao, J. et al. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact. Mater. 2020, 5, 768–778.

[19]

Ma, Y. F.; Yao, J. X.; Liu, Q.; Han, T.; Zhao, J. P.; Ma, X. H.; Tong, Y. M.; Jin, G. R.; Qu, K.; Li, B. Q. et al. Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first-aid tissue adhesive. Adv. Funct. Mater. 2020, 30, 2001820.

[20]

Peng, X.; Xu, X.; Deng, Y. R.; Xie, X.; Xu, L. M.; Xu, X. Y.; Yuan, W. H.; Yang, B. G.; Yang, X. F.; Xia, X. F. et al. Ultrafast self-gelling and wet adhesive powder for acute hemostasis and wound healing. Adv. Funct. Mater. 2021, 31, 2102583.

[21]

Qiao, Z. W.; Lv, X. L.; He, S. H.; Bai, S. M.; Liu, X. C.; Hou, L. X.; He, J. J.; Tong, D. M.; Ruan, R. J.; Zhang, J. et al. A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings. Bioact. Mater. 2021, 6, 2829–2840.

[22]

Cui, C. Y.; Fan, C. C.; Wu, Y. H.; Xiao, M.; Wu, T. L.; Zhang, D. F.; Chen, X. Y.; Liu, B.; Xu, Z. Y.; Qu, B. et al. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis. Adv. Mater. 2019, 31, 1905761.

[23]

Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X. Y.; Padera, R. F.; Roche, E. T.; Zhao, X. H. Dry double-sided tape for adhesion of wet tissues and devices. Nature. 2019, 575, 169–174.

[24]

Chen, X. Y.; Yuk, H.; Wu, J. J.; Nabzdyk, C. S.; Zhao, X. H. Instant tough bioadhesive with triggerable benign detachment. Proc. Natl. Acad. Sci. USA 2020, 117, 15497–15503.

[25]

Pan, G. X.; Li, F. H.; He, S. H.; Li, W. D.; Wu, Q. M.; He, J. J.; Ruan, R. J.; Xiao, Z. X.; Zhang, J.; Yang, H. H. Mussel- and barnacle cement proteins-inspired dual-bionic bioadhesive with repeatable wet-tissue adhesion, multimodal self-healing, and antibacterial capability for nonpressing hemostasis and promoted wound healing. Adv. Funct. Mater. 2022, 32, 2200908.

[26]

Zhu, Z. J.; Cheng, R.; Ling, L. T.; Li, Q.; Chen, S. Rapid and large-scale production of multi-fluorescence carbon dots by a magnetic hyperthermia method. Angew. Chem., Int. Ed. 2020, 59, 3099–3105.

[27]

Jiang, K.; Long, Y. Z.; Chen, Z. J.; Liu, S. L.; Huang, Y. Y.; Jiang, X. Y.; Huang, Z. Q. Airflow-directed in situ electrospinning of a medical glue of cyanoacrylate for rapid hemostasis in liver resection. Nanoscale. 2014, 6, 7792–7798.

[28]

Dong, R. H.; Qin, C. C.; Qiu, X.; Yan, X.; Yu, M.; Cui, L.; Zhou, Y.; Zhang, H. D.; Jiang, X. Y.; Long, Y. Z. In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue with high efficiency and low toxicity. Nanoscale. 2015, 7, 19468–19475.

[29]

Luo, W. L.; Zhang, J.; Qiu, X.; Chen, L. J.; Fu, J.; Hu, P. Y.; Li, X.; Hu, R. J.; Long, Y. Z. Electric-field-modified in situ precise deposition of electrospun medical glue fibers on the liver for rapid hemostasis. Nanoscale Res. Lett. 2018, 13, 278.

[30]

Luo, W. L.; Qiu, X.; Zhang, J.; Hu, P. Y.; Liu, X. F.; Liu, J. J.; Yu, M.; Ramakrishna, S.; Long Y. Z. In situ accurate deposition of electrospun medical glue fibers on kidney with auxiliary electrode method for fast hemostasis. Mater. Sci. Eng. C 2019, 101, 380–386.

[31]

Cui, T. T.; Yu, J. F.; Li, Q.; Wang, C. F.; Chen, S.; Li, W. J.; Wang, G. F. Large-scale fabrication of robust artificial skins from a biodegradable sealant-loaded nanofiber scaffold to skin tissue via microfluidic blow-spinning. Adv. Mater. 2020, 32, 2000982.

[32]

Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X. X.; Huang, L. P.; Yu, M.; Ramakrishna, S.; Long, Y. Z. Recent progress and challenges in solution blow spinning. Mater. Horiz. 2021, 8, 426–446.

[33]

Li, Y.; Xiong, J. Q.; Lv, J.; Chen, J.; Gao, D. C.; Zhang, X. X.; Lee, P. S. Mechanically interlocked stretchable nanofibers for multifunctional wearable triboelectric nanogenerator. Nano Energy. 2020, 78, 105358.

[34]

Cui, Y.; Huang, Z. W.; Lei, L.; Li, Q. L.; Jiang, J. L.; Zeng, Q. H.; Tang, A. D.; Yang, H. M.; Zhang, Y. Robust hemostatic bandages based on nanoclay electrospun membranes. Nat. Commun. 2021, 12, 5922.

[35]

Deng, P. P.; Yao, L. C.; Chen, J. J.; Tang, Z. G.; Zhou, J. P. Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydr. Polym. 2022, 276, 118718.

[36]

Li, Q.; Lu, F.; Shang, S. M.; Ye, H. L.; Yu, K.; Lu, B. T.; Xiao, Y.; Dai, F. Y.; Lan, G. Q. Biodegradable microporous starch with assembled thrombin for rapid induction of hemostasis. ACS Sustainable Chem. Eng. 2019, 7, 9121–9132.

[37]

Li, Q.; Hu, E. L.; Yu, K.; Xie, R. Q.; Lu, F.; Lu, B. T.; Bao, R.; Zhao, T. F.; Dai, F. Y.; Lan, G. Q. Self-propelling Janus particles for hemostasis in perforating and irregular wounds with massive hemorrhage. Adv. Funct. Mater. 2020, 30, 2004153.

[38]

Chen, F. P.; Cao, X. Y.; Chen, X. L.; Wei, J.; Liu, C. S. Calcium-modified microporous starch with potent hemostatic efficiency and excellent degradability for hemorrhage control. J. Mater. Chem. B 2015, 3, 4017–4026.

[39]

Hou, Y.; Xia, Y.; Pan, Y. K.; Tang, S. C.; Sun, X. F.; Xie, Y.; Guo, H.; Wei, J. Influences of mesoporous zinc-calcium silicate on water absorption, degradability, antibacterial efficacy, hemostatic performances and cell viability to microporous starch based hemostat. Mater. Sci. Eng. C 2017, 76, 340–349.

[40]

Xia, X. F.; Xu, X. Y.; Wang, B.; Zhou, D.; Zhang, W. L.; Xie, X.; Lai, H. S.; Xue, J.; Rai, A.; Li, Z. et al. Adhesive hemostatic hydrogel with ultrafast gelation arrests acute upper gastrointestinal hemorrhage in pigs. Adv. Funct. Mater. 2022, 32, 2109332.

[41]

Li, Z.; Milionis, A.; Zheng, Y.; Yee, M.; Codispoti, L.; Tan, F.; Poulikakos, D.; Yap, C. H. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. Nat. Commun. 2019, 10, 5562.

[42]

Tarafder, S.; Park, G. Y.; Felix, J.; Lee, C. H. Bioadhesives for musculoskeletal tissue regeneration. Acta Biomater. 2020, 117, 77–92.

[43]

Cui, R. H.; Chen, F. P.; Zhao, Y. J.; Huang, W. J.; Liu, C. S. A novel injectable starch-based tissue adhesive for hemostasis. J. Mater. Chem. B 2020, 8, 8282–8293.

[44]

Peng, X.; Xia, X. F.; Xu, X. Y.; Yang, X. F.; Yang, B. G.; Zhao, P. C.; Yuan, W. H.; Chiu, P. W. Y.; Bian, L. M. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. Sci. Adv. 2021, 7, eabe8739.

Video
12274_2022_4691_MOESM2_ESM.mp4
12274_2022_4691_MOESM3_ESM.mp4
12274_2022_4691_MOESM4_ESM.mp4
12274_2022_4691_MOESM5_ESM.mp4
12274_2022_4691_MOESM6_ESM.mp4
12274_2022_4691_MOESM7_ESM.mp4
File
12274_2022_4691_MOESM1_ESM.pdf (766 KB)
Publication history
Copyright

Publication history

Received: 11 May 2022
Revised: 20 June 2022
Accepted: 21 June 2022
Published: 05 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022
Return