Sort:
Open Access Research Article Issue
Fabrication and mechanical behavior of 2D-Cf/TaxHf1−xC–SiC composites by a low-temperature and highly-efficient route
Journal of Advanced Ceramics 2023, 12 (10): 1961-1972
Published: 19 October 2023
Downloads:218

Cf/TaxHf1−xC–SiC composites are ideal thermal structural materials for service under extreme conditions of hypersonic vehicles. However, how to synthesize TaxHf1-xC powders and efficiently fabricate Cf/TaxHf1-xC–SiC composites still faces some challenges. Furthermore, mechanical properties and thermophysical properties of TaxHf1−xC vary with the composition, but not monotonically. In-depth analysis of mechanical behaviors of the Cf/TaxHf1−xC–SiC composites is extremely important for their development and applications. In this study, the TaxHf1−xC powders (x = 0.2, 0.5, 0.8) were successfully synthesized via solid solution of TaC and HfC at a relatively low temperature of 1800 ℃, with a small amount of Si as an additive. Subsequently, the efficient fabrication of 2D-Cf/TaxHf1–xC–SiC composites was achieved by slurry impregnation and lamination (SIL) combined with precursor infiltration and pyrolysis (PIP). In addition, the mechanical behavior of the composites was investigated systematically. It is demonstrated that the composites present remarkable non-brittle fractures, including a large number of fiber pull out and interphase debonding. Also, the fracture failure involves a complex process of microcrack generation and propagation, matrix cracking, and layer fracture. Moreover, the interfacial bonding between the fibers and the matrix is enhanced as the Ta∶Hf ratio decreases from 4∶1 to 1∶4. As a result, Cf/Ta0.2Hf0.8C–SiC composites exhibit exceptional flexural strength of 437±19 MPa, improved by 46% compared with Cf/Ta0.8Hf0.2C–SiC (299±19 MPa). This study provides a new perception of design and fabrication of ultra-high-temperature ceramic (UHTC) matrix composites with high performance.

Open Access Research Article Issue
Fabrication and microstructure evolution of Csf/ZrB2-SiC composites via direct ink writing and reactive melt infiltration
Journal of Advanced Ceramics 2021, 10 (6): 1371-1380
Published: 30 September 2021
Downloads:314

Fiber damage and uniform interphase preparation are the main challenges in conventional short fiber reinforced ceramic matrix composites. In this work, we develop a novel processing route in fabrication of short carbon fiber reinforced ZrB2-SiC composites (Csf/ZrB2-SiC) overcoming the above two issues. At first, Csf preforms with oriented designation and uniform PyC/SiC interphase are fabricated via direct ink writing (DIW) of short carbon fiber paste followed by chemical vapor infiltration. After that, ZrB2 and SiC are introduced into the preforms by slurry impregnation and reactive melt infiltration, respectively. Microstructure evolution and optimization of the composites during fabrication are investigated in detail. The as-fabricated Csf/ZrB2-SiC composites have a bulk density of 2.47 g/cm3, with uniform weak interphase and without serious fiber damage. Consequently, non-brittle fracture occurs in the Csf/ZrB2-SiC composites with widespread toughening mechanisms such as crack deflection and bridging, interphase debonding, and fiber pull-out. This work provides a new opportunity to the material design and selection of short fiber reinforced composites.

Open Access Research Article Issue
Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis
Journal of Advanced Ceramics 2021, 10 (1): 28-38
Published: 24 November 2020
Downloads:267

In this work, three-dimensional (3D) Cf/SiBCN composites were fabricated by polymer infiltration and pyrolysis (PIP) with poly(methylvinyl)borosilazane as SiBCN precursor. The 3D microstructure evolution process of the composites was investigated by an advanced X-ray computed tomography (XCT). The effect of dicumyl peroxide (DCP) initiator addition on the crosslinking process, microstructure evolution, and mechanical properties of the composites were uncovered. With the addition of a DCP initiator, the liquid precursor can cross-linking to solid-state at 120 ℃. Moreover, DCP addition decreases the release of small molecule gas during pyrolysis, leading to an improved ceramic yield 4.67 times higher than that without DCP addition. After 7 PIP cycles, density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g·cm-3 and ~10%, respectively, which are 143.0% higher and 30.3% lower compared with the composites without DCP addition. As a result, the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition (371 MPa and 31 GPa) are 1.74 and 1.60 times higher than that without DCP addition (213 MPa and 19.4 GPa), respectively.

Open Access Research Article Issue
3D Cf/SiBCN composites prepared by an improved polymer infiltration and pyrolysis
Journal of Advanced Ceramics 2018, 7 (3): 266-275
Published: 10 October 2018
Downloads:21

Using liquid poly(methylvinyl)borosilazanes (PMVBSZ) as precursor, carbon fiber reinforced SiBCN matrix composites (Cf/SiBCN) were fabricated by a modified polymer infiltration and pyrolysis (PIP) process. With dicumyl peroxide added as cross-linking agent, the PMVBSZ could be solidified at a low temperature of 120 ℃, leading to a high ceramic yield of ~70%. The cross-linking mechanism and ceramization processes of the precursor were investigated in detail. Moreover, a modified infiltration technology was developed, which improved the efficiency and protected the precursor against moist air during PIP. Consequently, the obtained Cf/SiBCN composites had an oxygen content of around 1.22 wt%. Benefiting from the high ceramic yield and high efficiency of the modified PIP, Cf/SiBCN composites with an open porosity of ~10% and uniform microstructure were obtained after only 7 cycles of PIP. The flexural strength and fracture toughness of the derived Cf/SiBCN composites were 371 MPa and 12.9 MPa·m1/2, respectively. This work provides a potential route for the fabrication of high performance Cf/SiBCN composites.

total 4