Sort:
Open Access Research Article Issue
Application of Aloe vera Gel Blended Polymer-Collagen Scaffolds for Bone Tissue Engineering
Nano Biomedicine and Engineering 2023, 15 (2): 118-125
Published: 16 June 2023
Downloads:655

Osteoblasts have an essential role in the process of bone formation, and polymer-collagen-Aloe vera (AV) is known to stimulate osteoblast proliferation and maturation. In this translational study, the effects of scaffolds on bone healing and the potential mechanisms responsible were investigated using an animal model of bone defects. Here, following surgical introduction of a bone defect in the proximal femurs of male rabbits, the left femur was implanted with scaffolds for 21 days, then compared to the right femur, which served as a control. According to histological analyses, the use of scaffolds did not result in hepatotoxicity or nephrotoxicity. In contrast to the control group, imaging using X-ray transmission and microcomputed tomography revealed that scaffold implantation boosted the bone repair. In addition, microcomputed tomographic and bone histomorphometric assays in the scaffold-treated group exposed an expansion in the formation of new trabecular bone. Furthermore, scaffold implantation resulted in a considerable increase in trabecular bone thickness but a decrease in the trabecular parameter factor. Following scaffold implantation, the quantities of alkaline phosphatase and osteocalcin, biomarkers capable of simulating bone development, were found to have gradually increased. Overall, this translational study found that scaffolds can improve bone repair by increasing trabecular bone creation via upregulation of Runx2-mediated alkaline phosphatase and osteocalcin gene expression. Our findings therefore suggest that scaffolds can be used to treat bone problems such as deformities and fractures.

Open Access Research Article Issue
Enhancing Osteoblast Response and Biointegration in vivo: Grown Zirconium Oxide Nanotube Bundles on Zirconium Surgical Screw
Nano Biomedicine and Engineering 2021, 13 (3): 213-224
Published: 19 July 2021
Downloads:23

In this paper, the surface of zirconium implant was improved by growing zirconium oxide nanotubes using a simple chemical method to increase the surface porosity and thus increase the effectiveness of bone fusion. Histopathological examinations showed the filling of the bone lakes at the implant site with live bone cells and the penetration of Haversian canals into the blood vessels. EDXS profile confirmed the signal characteristic of zirconium and oxygen. EDXS profile is another evidence of pure ZrO2 nanotubes formation. EDXS presents peaks between 0.525 and 2.044 kV, which indicate the presence of ZrO2 nanotubes. SEM result showed that homogeneous nanotubes are less in diameter with increasing concentration of glycerine.

Open Access Research Article Issue
Synthesis of ZnO Nanorod/TiO2 Nanotube and its Application as a Resistive Gas Sensor
Nano Biomedicine and Engineering 2021, 13 (1): 44-51
Published: 27 January 2021
Downloads:28

In this study, different chemical methods were used to synthesize ZnO nanorod, TiO2 nanotube and ZnO/TiO2 nanostructure as high sensitivity vapor sensor for ethanol. The surface topography of ZnO nanorod, TiO2 nanotube and ZnO/TiO2 was studied by using the scanning electron microscopy (SEM). The X-rays diffraction showed the appearance of (101) ZnO which has single crystalline with a hexagonal wurtzite while TiO2 has been crystallized in a tetragonal with the preferential orientation of the crystallinity with the prominent (111). The relation between resistance-time showed high sensitivity for ZnO/TiO2 and was found to be around 20-80% at different working temperature. ZnO/TiO2 sensor was the most sensitive to ethanol vapor.

total 3