Sort:
Open Access Original Article Issue
Characterization and capillary pressure curve estimation of clayey-silt sediment in gas hydrate reservoirs of the South China Sea
Advances in Geo-Energy Research 2023, 10 (3): 200-207
Published: 20 December 2023
Downloads:7

The capillary pressure curve is a crucial basis for studying the pore structure and multiphase flow characteristics in oil and gas reservoirs. Due to the loose and unconsolidated nature of the clayey-silt sediment of natural gas hydrate reservoirs in the South China Sea, conventional methods such as mercury intrusion and centrifugation struggle to obtain capillary pressure curves for these sediments. In this study, X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption, and water-gas contact angle measurements are utilized to characterize the mineral composition, pore structure, pore size distribution, and wettability of the clayey-silt sediment. Subsequently, the filter paper method from soil mechanics is employed to determine the capillary pressure curve for the clayey-silt samples. The results indicate that the capillary pressure curve obtained through the filter paper method exhibits a saturation range of 18.39%-80.31% and a capillary pressure range of 19.04 to 46,481.42 kPa. It exhibits a distinct two-stage characteristic, where capillary pressure changes rapidly with water saturation below 61.05% and slowly above 61.05%. The pore radius calculated from the capillary pressure curve ranges from 2.41 nm to 5.91 μm. This alignment with the pore ranges obtains from nitrogen adsorption and Scanning Electron Microscopy confirms the accuracy of the obtained capillary pressure curve. Furthermore, in comparison with a literature capillary pressure curve obtained through centrifugation, the paper filtration method covers a broader range, providing better representation of capillary pressure in the multiscale pores of clayey-silt samples.

Open Access Original Article Issue
Imbibition behaviors in shale nanoporous media from pore-scale perspectives
Capillarity 2023, 9 (2): 32-44
Published: 14 October 2023
Downloads:52

In shale reservoirs, spontaneous imbibition is an important mechanism of fracturing fluid loss, which has an important impact on enhanced oil recovery and water resource demand. However, spontaneous imbibition behaviors are more complicated to characterize and clarify due to the nanoscale effects of the boundary slip, oil-water interfacial slip, and heterogeneous fluid properties caused by intermolecular interactions. A nanoscale multi-relaxation-time multicomponent and multiphase lattice Boltzmann method was applied to investigate the water imbibition into oil-saturated nanoscale space. The effects of pore size, fluid-surface slip, water film, oil-water interfacial slip, water bridge, and pore structures on the imbibition behaviors in a single nanopore were investigated. Then, the spontaneous imbibition behaviors in nanoporous media based on the pore scale microsimulation parameters obtained from the molecular simulation velocity results were simulated, and the effects of water saturations on imbibition behaviors were discussed. The results show that as the water saturation increases from 0 to 0.1, the imbibition mass in nanoporous media increases because of the oil-water interfacial slip and a completely hydrophilic wall. As water saturation continues to increase, the imbibition mass decreases gradually because the existence of water bridges impedes the water imbibition.

Open Access Current Minireview Issue
Research progress and scientific challenges in the depressurization exploitation mechanism of clayey-silt natural gas hydrates in the northern South China Sea
Advances in Geo-Energy Research 2023, 10 (1): 14-20
Published: 22 September 2023
Downloads:11

Natural gas hydrate reservoirs in the northern South China Sea primarily comprise clayey silt, making exploitation more challenging relative to sandy reservoirs in other countries and regions. This paper provides an overview of the latest research developments in the exploitation mechanism covering the past five years, focusing on hydrate phase transition, multiphase flow in the decomposition zone, the seepage regulation of reservoir stimulation zone, and production capacity simulation, all of which are relevant to the previously conducted two rounds of hydrate trial production in offshore areas of China. The results indicate that the phase transition of clayey-silt hydrate remains in a dynamic equilibrium, with the decomposition efficiency mainly controlled by the coupling of heat and flow and high heat consumption during decomposition. The decomposition zone exhibits strong hydrophilicity, easy adsorption, and sudden permeability changes. A temperature drop is present that is concentrated near the wellbore, and once a water lock has formed, the gas-phase flow capacity significantly decreases, leading to potential secondary hydrate formation. To enhance permeability and increase production, it is imperative to implement reservoir and temperature field reconstruction based on initial formation alterations, which will further optimize and improve the transport capacity of the reservoir.

Open Access Perspective Issue
Quantitative characterization of fluid occurrence in shale reservoirs
Advances in Geo-Energy Research 2023, 9 (3): 146-151
Published: 18 August 2023
Downloads:31

Shale oil and gas, as important unconventional resources, have been widely discussed in the last decade. The occurrence characteristics of fluids (oil, gas, and water) in shale reservoirs are closely related to the exploitation of shale oil and gas, therefore the quantitative characterization of fluid occurrence in shale reservoirs has received extensive attention. In this paper, the latest advances and potential challenges on this subject are summarized. With respect to shale oil, the amounts, ratios and micro-distributions of shale oil in different states can be determined using the state equation of liquid and adsorption ratio equation, which contributes to identifying high-quality shale oil reservoirs. However, it is still necessary to strengthen the research on the multi-attribute coupling relationship and oil-rock interaction of shale oil reservoirs, and the determination of occurrence characteristics of adsorbed and free oil under in situ reservoir conditions. In terms of shale gas evaluation, the process analysis method and isotope fractionation method effectively solve the problem of evaluating in situ gas-bearing characteristics of shale, and can accurately estimate the amounts of total, adsorbed and free gas. The quantum physisorption behavior of gas could be a new research direction to reveal the microscopic occurrence mechanism of shale gas. As for shale pore water, a complete evaluation procedure for determining the amounts and micro-distributions of adsorbed and free water in shale matrix pores has been established, which provides insight into the storage and flow of oil and gas. In future work, a study on the quantitative evaluation of water-rock interaction is significant for obtaining the adsorbed and free water under in situ reservoir conditions.

Open Access Editorial Issue
Recent advances on fluid flow in porous media using digital core analysis technology
Advances in Geo-Energy Research 2023, 9 (2): 71-75
Published: 30 July 2023
Downloads:26

The scientific and engineering challenges of research on porous media have gained substantial attention in recent decades. These intricate issues span different disciplines and fields, manifesting in natural and industrial systems like soils, oil and gas reservoirs, tissues, plants, etc. Meanwhile, digital core analysis technology has rapidly developed, proving invaluable not just in oil and gas reservoirs development, but also in geothermal energy, carbon and hydrogen storage. The China InterPore Chapter and the Research Center of Multiphase Flow in Porous Media at China University of Petroleum (East China) have established a conference platform for global scholars to exchange ideas and research in porous media utilizing digital core analysis technology. The 6th International Conference on Digital Core Analysis & the 2023 China Interpore Conference on Porous Media was successfully held in Qingdao from July 5 to 7, 2023. The conference facilitated discussions among 150 participants, including over 20 invited experts from academia and industry, and the recent advances in research of fluid flow in porous media using digital core analysis technology were thoroughly presented.

Open Access Editorial Issue
Current advances in capillarity: Theories and applications
Capillarity 2023, 7 (2): 25-31
Published: 09 May 2023
Downloads:72

As common physical phenomena in porous media,capillarity behaviors exist in many engineering applications and natural science fields. The experimental,theoretical and numerical research on capillarity in porous media has lasted for more than a century,and the research results have been widely used in various fields,such as the development of conventional and unconventional resources. However,although the research has made great progress,the complex imbibition mechanism poses new challenges to us. The 1st National Conference on Imbibition Theory and Application in Porous Media was held in Beijing from April 22 to 24,2023, to gather researchers who are interested in imbibition research,exchange the latest progress and achievements in the field of imbibition in porous media,and discuss research hotspots and difficulties.

Open Access Editorial Issue
Opportunities and challenges in CO2 geologic utilization and storage
Advances in Geo-Energy Research 2023, 8 (3): 141-145
Published: 05 May 2023
Downloads:58

CO2 geological utilization and storage is considered as an effective approach to deeply cut anthropogenic CO2 emissions. It is vital to enhance the amount of CO2 stored in the subsurface, at the same time to ensure safe and long-term subsurface storage of CO2 without any CO2 leakage. Science and engineering research in modeling concepts, experimental approaches, safety assurance and emerging CO2 geological utilization and storage technologies have driven the advancement of CO2 geological utilization and storage in recent years. In order to encourage communication and collaboration in CO2 geological utilization and storage research worldwide, a Sino-German joint symposium titled “Opportunities and Challenges in CO2 Geologic Utilization and Storage” was organized in Wuhan and Stuttgart from February 22 to 24, 2023, bringing together experts from China, Germany, and other countries. The symposium was jointly organized by Institute of Rock and Soil Mechanics, Chinese Academy of Sciences and Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart with financial support from the Sino-German Center for Research Promotion. A two-site hybrid meeting was held (participants in China met in Wuhan, participants in Germany met in Stuttgart, and other participants joined the meeting online), attracting more than 100 participants from around the world. The latest studies in the field of CO2 geological utilization and storage were presented at the symposium.

Open Access Original Article Issue
Prediction of permeability of tight sandstones from mercury injection capillary pressure tests assisted by a machine-learning approach
Capillarity 2022, 5 (5): 91-104
Published: 15 October 2022
Downloads:18

Mercury injection capillary pressure analysis is a methodology for determining different petrophysical properties, including bulk density, porosity, and pore throat distribution. In this work, distinct parameters derived from mercury injection capillary pressure tests was considered for the prediction of permeability by coupling machine learning and theoretical approaches in a dataset composed of 246 tight sandstone samples. After quality checking the dataset, the feature selection was carried out by correlation analysis of different theoretical permeability models and statistical parameters with the measured permeability. Finally, porosity, median capillary pressure, Winland model, and mean pore-throat radius (corresponding to the saturation range 0.4-0.8) were chosen as the input features of the machine learning model. As the machine learning approach, a support vector machine (SVM) model with a radial basis function kernel was proposed. Furthermore, the model and its metaparameters were trained with a particle swarm optimization (PSO) algorithm to avoid over-fitting or under-fitting. In contradiction to the theoretical models, the implemented SVM-PSO model could acceptably predict the experimentally measured permeability values with an R 2 rate of over 0.88 for training and testing datasets. The introduced approach could reduce the mean relative errors from about 10 to values less than 0.45. The improvements were more significant for low permeability samples. This successful implementation shows the potential of coupled usage of theoretical and machine learning methodologies for improved prediction of permeability of tight sandstone rocks.

Open Access Original Article Issue
Predicting adsorbed gas capacity of deep shales under high temperature and pressure: Experiments and modeling
Advances in Geo-Energy Research 2022, 6 (6): 482-491
Published: 17 July 2022
Downloads:66

Temperature and pressure conditions of deep shale are beyond experiment range, and the amount of adsorbed gas is difficult to determine. To predict the adsorbed gas content of deep shales under formation conditions, isothermal adsorption experiments and model building were conducted on shale samples from Longmaxi Formation in China. A temperature-dependent adsorption model based on the Langmuir equation is proposed, which can be well-fitted by observed isotherms with a high correlation coefficient. Based on the fitted parameters at 303.15 K, the isothermal adsorption curves at 333.15 K, 363.15 K, and 393.15 K are predicted, showing a good agreement with experimental curves available. Compared with previous prediction methods, the biggest advantage of the proposed method is that it can be carried out only based on one-time isothermal adsorption experiment. Based on the predictions, the downward trend of the excess adsorption curves will slow down under high temperature and pressure conditions, and when the pressure reaches a certain level (> 80 MPa), the temperature has little effect on the excess adsorption capacity. While for absolute adsorption, the gas adsorption reaches saturation much slowly at high temperature, it can also reach saturation under formation pressure. Under the burial depth of marine shale, temperature plays a major role in controlling the adsorbed gas, resulting in the decrease of adsorbed gas content in deep shale, and its ratio will further decrease as the depth increases.

Open Access Editorial Issue
Advances in multiscale rock physics for unconventional reservoirs
Advances in Geo-Energy Research 2022, 6 (4): 271-275
Published: 27 May 2022
Downloads:220

The multiscale rock physics of unconventional reservoirs have drawn increasing attention in recent years, which involves several essential issues, including measuring method, transport property, physics model, characteristic scale, and their application. These issues vastly affect science and engineering regarding the exploration and development of unconventional reservoirs. To encourage communication on the advances of research on the rock physics of unconventional reservoirs, a conference on Multiscale Rock Physics for Unconventional Reservoirs was jointly organized by the journals Energies and Advances in Geo-Energy Research. Due to the limitations of movement caused by COVID-19, 21 experts introduced their work online, and the conference featured the latest multiscale theories, experimental methods and numerical simulations on unconventional reservoirs.

total 14