Sort:
Open Access Original Article Issue
Imbibition behaviors in shale nanoporous media from pore-scale perspectives
Capillarity 2023, 9 (2): 32-44
Published: 14 October 2023
Downloads:52

In shale reservoirs, spontaneous imbibition is an important mechanism of fracturing fluid loss, which has an important impact on enhanced oil recovery and water resource demand. However, spontaneous imbibition behaviors are more complicated to characterize and clarify due to the nanoscale effects of the boundary slip, oil-water interfacial slip, and heterogeneous fluid properties caused by intermolecular interactions. A nanoscale multi-relaxation-time multicomponent and multiphase lattice Boltzmann method was applied to investigate the water imbibition into oil-saturated nanoscale space. The effects of pore size, fluid-surface slip, water film, oil-water interfacial slip, water bridge, and pore structures on the imbibition behaviors in a single nanopore were investigated. Then, the spontaneous imbibition behaviors in nanoporous media based on the pore scale microsimulation parameters obtained from the molecular simulation velocity results were simulated, and the effects of water saturations on imbibition behaviors were discussed. The results show that as the water saturation increases from 0 to 0.1, the imbibition mass in nanoporous media increases because of the oil-water interfacial slip and a completely hydrophilic wall. As water saturation continues to increase, the imbibition mass decreases gradually because the existence of water bridges impedes the water imbibition.

Open Access Original Article Issue
Pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent and multiphase slip flow
Advances in Geo-Energy Research 2023, 9 (2): 106-116
Published: 03 August 2023
Downloads:36

The microscale liquid flow in nanoscale systems considering slip boundary has been widely studied in recent years, however, they are limited to single-phase flow. As in nature, multicomponent and multiphase flows can also exist with non-zero slip velocities, such as oil/water slip flow in nanoporous shale. In this paper, a novel multicomponent-multiphase multiple-relaxation-time lattice Boltzmann method with a combinational slip boundary condition is developed to study the two-phase slip flow behaviors. The proposed combined slip boundary condition is derived from adjustments to the conventional diffusive Maxwell’s reflection and half-way bounce-back scheme boundary parameters, incorporating a compelled conservation requirement. With the analysis of simulations for the layer, slug, and droplet types of two-phase flow in single pores, and two-phase flow in porous media with complex wall geometry, it can be concluded that the proposed schemes of two-phase slip boundary conditions are particularly suitable for multicomponent and multiphase flow with a non-zero slip velocity. The proposed model can be used to determine relative permeability and simulate spontaneous imbibition in particular in shale reservoirs where those flow properties are hard-to-determine.

Open Access Original Article Issue
Capillary and viscous forces during CO2 flooding in tight reservoirs
Capillarity 2022, 5 (6): 105-114
Published: 10 October 2022
Downloads:60

In this study, the multiphase multicomponent Shan-Chen lattice Boltzmann method is employed to analyze the impact of capillary force on oil-CO2-water fluid flow and enhanced oil recovery. Various sizes of the single throat are designed to simulate the interaction between displacing and displaced phases as well as their mechanical equilibrium. Several sensitivities are taken into account, such as wettability, miscibility, interfacial tension, and pore aperture. Based on the objective reservoir conditions, supercritical CO2 as an injection fluid is adopted to study the influence of different displacement patterns on the mechanical equilibrium in both homogenous and heterogeneous porous media, in which enhanced oil recovery is also quantitatively estimated. The results show that the water-alternating-gas injection pattern reduces the moving speed of the leading edge by increasing the swept area of the residual oil, and inhibits the breakthrough effect of the gas, making it the optimal displacement method in terms of the degree of oil production. Compared with the results of different displacement patterns, the enhanced oil recovery of water-alternating-gas injection is the highest, followed by supercritical CO2 flooding after water flooding, and lastly, continuous supercritical CO2 flooding.

Open Access Original Article Issue
A unified apparent porosity/permeability model of organic porous media: Coupling complex pore structure and multimigration mechanism
Advances in Geo-Energy Research 2020, 4 (2): 115-125
Published: 11 March 2020
Downloads:143

Shale gas resources are widely distributed and abundant in China, which is an important field for strategic replacement and development of oil and gas resources. Shale gas reservoirs has adsorption gas, free gas. The structure of different scale media, such as organic pores, are difficult to describe. Therefore, flow behavior cannot be simulated by conventional method. In this paper, the micro-scale fluid migration in shale gas reservoirs was established in a single pore, which coupled surface diffusion, slip flow, and viscous flow. On this basis, the fractal scale relationship was applied to describe the distribution of pore radius, tortuosity, and surface roughness. Based on the comprehensive characterization of static structure characteristics of porous media, such as pore size distribution, pore shapes, tortuosity and surface roughness, and the dynamic pore size influenced by various stresses, the apparent porosity/permeability model of organic matter considering singlephase multi-migration mechanism was established. The gas migration in organic porous media was analyzed with the apparent porosity/permeability model. The results show that the small pores in organic matter are the main storage space of gas (more than 95% of the gas is stored in pores less than 10 nm), and the large pores are gas flow channel. At the same time, the apparent porosity/permeability model combined with conventional Darcy equation can be used to describe the single-phase gas flow in shale gas reservoirs.

Open Access Original Article Issue
Modeling for reorientation and potential of enhanced oil recovery in refracturing
Advances in Geo-Energy Research 2020, 4 (1): 20-28
Published: 29 February 2020
Downloads:25

Reorientation of fractures and high production improvement are observed and illustrated by fields and theoretical researches. During the refracturing treatments, it is important to get familiar with the enhanced oil recovery mechanics of fracture reorientation and distribution of residual oil. Mechanisms of fracture reorientation are discussed in order to design the parameters of reoriented fractures in numerical simulation. To furtherly evaluate the oil recovery of different angles of reoriented fractures, geological and numerical models are simulated using data of the actual reservoir with rhombus inverted nine spot well pattern, different angles of reoriented fracture are designed for both corner and edge wells to obtain the enhanced oil recovery. Results show that potential of production increase is highly impacted by the well pattern and angles of fractures and meanwhile impacted by distribution of residual oil and formation properties. Oil enhancement potential is significantly different with fracture reorientation angles in refracturing treatment: cumulative produced oil for corner wells is symmetrical around the angle of 0° and reaches the highest at the angles of positive and negative 23°; for the edge wells, it is also symmetrical around the angle of 0° while reaches the highest cumulative oil at the angles of positive and negative 90°. The difference shows that optimal angles exist for reoriented fractures during refracturing design and with proper induced reoriented fractures, more oil will be recovered for field restimulation treatments.

total 5