Sort:
Open Access Original Article Issue
Imbibition behaviors in shale nanoporous media from pore-scale perspectives
Capillarity 2023, 9 (2): 32-44
Published: 14 October 2023
Downloads:52

In shale reservoirs, spontaneous imbibition is an important mechanism of fracturing fluid loss, which has an important impact on enhanced oil recovery and water resource demand. However, spontaneous imbibition behaviors are more complicated to characterize and clarify due to the nanoscale effects of the boundary slip, oil-water interfacial slip, and heterogeneous fluid properties caused by intermolecular interactions. A nanoscale multi-relaxation-time multicomponent and multiphase lattice Boltzmann method was applied to investigate the water imbibition into oil-saturated nanoscale space. The effects of pore size, fluid-surface slip, water film, oil-water interfacial slip, water bridge, and pore structures on the imbibition behaviors in a single nanopore were investigated. Then, the spontaneous imbibition behaviors in nanoporous media based on the pore scale microsimulation parameters obtained from the molecular simulation velocity results were simulated, and the effects of water saturations on imbibition behaviors were discussed. The results show that as the water saturation increases from 0 to 0.1, the imbibition mass in nanoporous media increases because of the oil-water interfacial slip and a completely hydrophilic wall. As water saturation continues to increase, the imbibition mass decreases gradually because the existence of water bridges impedes the water imbibition.

Open Access Original Article Issue
Pseudopotential-based multiple-relaxation-time lattice Boltzmann model for multicomponent and multiphase slip flow
Advances in Geo-Energy Research 2023, 9 (2): 106-116
Published: 03 August 2023
Downloads:36

The microscale liquid flow in nanoscale systems considering slip boundary has been widely studied in recent years, however, they are limited to single-phase flow. As in nature, multicomponent and multiphase flows can also exist with non-zero slip velocities, such as oil/water slip flow in nanoporous shale. In this paper, a novel multicomponent-multiphase multiple-relaxation-time lattice Boltzmann method with a combinational slip boundary condition is developed to study the two-phase slip flow behaviors. The proposed combined slip boundary condition is derived from adjustments to the conventional diffusive Maxwell’s reflection and half-way bounce-back scheme boundary parameters, incorporating a compelled conservation requirement. With the analysis of simulations for the layer, slug, and droplet types of two-phase flow in single pores, and two-phase flow in porous media with complex wall geometry, it can be concluded that the proposed schemes of two-phase slip boundary conditions are particularly suitable for multicomponent and multiphase flow with a non-zero slip velocity. The proposed model can be used to determine relative permeability and simulate spontaneous imbibition in particular in shale reservoirs where those flow properties are hard-to-determine.

Open Access Original Article Issue
Capillary and viscous forces during CO2 flooding in tight reservoirs
Capillarity 2022, 5 (6): 105-114
Published: 10 October 2022
Downloads:60

In this study, the multiphase multicomponent Shan-Chen lattice Boltzmann method is employed to analyze the impact of capillary force on oil-CO2-water fluid flow and enhanced oil recovery. Various sizes of the single throat are designed to simulate the interaction between displacing and displaced phases as well as their mechanical equilibrium. Several sensitivities are taken into account, such as wettability, miscibility, interfacial tension, and pore aperture. Based on the objective reservoir conditions, supercritical CO2 as an injection fluid is adopted to study the influence of different displacement patterns on the mechanical equilibrium in both homogenous and heterogeneous porous media, in which enhanced oil recovery is also quantitatively estimated. The results show that the water-alternating-gas injection pattern reduces the moving speed of the leading edge by increasing the swept area of the residual oil, and inhibits the breakthrough effect of the gas, making it the optimal displacement method in terms of the degree of oil production. Compared with the results of different displacement patterns, the enhanced oil recovery of water-alternating-gas injection is the highest, followed by supercritical CO2 flooding after water flooding, and lastly, continuous supercritical CO2 flooding.

Open Access Invited Review Issue
A review of stimulated reservoir volume characterization for multiple fractured horizontal well in unconventional reservoirs
Advances in Geo-Energy Research 2017, 1 (1): 54-63
Published: 25 June 2017
Downloads:93

Unconventional resource exploration has boosted U.S. oil and gas production, which is successfully by horizontal well drilling and hydraulic fracturing. The horizontal well with multiple transverse fractures has proven to be effective stimulation approach could increase reservoir contact significantly. Unlike the single fracture planes in typical low permeability sands, fractures in shales tends to generate more complex, branching networks. The concept of stimulated reservoir volume was developed to quantitative measure of multistage fracture interact with natural fractures in unconventional reservoir. However, the simple fracture modeling of the past do not suitable for the complex scenarios simulation. This paper reviews the mainstream characterization method of stimulated reservoir volume in shale reservoirs, including microseismic interpretation, rate transient analysis method, analytical and semi-analytical method and numerical method. Finally, the systematic evaluation of application conditions with respect to each method and further research directions for characterization method are proposed.

total 4