Sort:
Research Article Issue
Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol
Nano Research 2023, 16 (7): 9081-9090
Published: 25 May 2023
Downloads:99

The selective hydrogenolysis of glycerol exhibits great prospects, while the catalysts with high selectivity and activity are still missing and need to be created urgently. Herein, we report the synthesis of hollow mesoporous Pt/WOx/SiO2-TiO2 nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts show a typical brick-concrete liked framework with a high surface area (179.3 m2·g−1), large mesopore size (10.6 nm), uniform particle size (~ 400 nm), and ultrathin shell thickness (~ 75 nm). The brick anatase nanocrystals and concrete amorphous SiO2 networks can selectively rivet Pt nanoparticles and WOx nanocluster species, respectively, thus constructing two interfaces for effective adsorption, rapidly catalytic dehydration and hydrogenation processes. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts deliver a high selectivity of 53.8% for 1,3-propanediol (1,3-PDO) at a very high glycerol conversion of 85.0%. As a result, a favorable 1,3-PDO yield of 45.7% can be obtained with excellent stability, which is among the best performances of previously reported catalysts. This work paves a new way to synthesize catalysts with high selectivity, high activity and high stability.

Research Article Issue
Hot spots engineering by dielectric support for enhanced photocatalytic redox reactions
Nano Research 2023, 16 (1): 239-247
Published: 12 August 2022
Downloads:43

Regulating the surface plasmon resonance (SPR) of metallic nanostructures is of great interests for optical and catalytic applications, however, it is still a great challenge for tuning SPR features of small metallic nanoparticles (< 10 nm). In this work, we design a unique dielectric support—urchin-like mesoporous silica nanoparticles (U-SiO2) with ordered long spikes on its surface, which can well enhance the SPR properties of ~ 3 nm gold nanocrystals (AuNCs). The U-SiO2 not only realizes the uniform self-assembly of AuNCs, but also prevents their aggregation due to the unique confinement effect. The finite-difference time-domain simulations show that the AuNCs on U-SiO2 can generate plasmonic hot spots with highly enhanced electromagnetic field. Moreover, the hot electrons can be effectively and rapidly transferred through the interface junction to TiO2. Thus, a high visible-light-driven photocatalytic activity can be observed, which is 3.8 times higher than that of smooth photocatalysts. The concept of dielectric supports engineering provides a new strategy for tuning SPR of small metallic nanocrystals towards the development of advanced plasmon-based applications.

Open Access Research Article Issue
Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries
Nano Materials Science 2023, 5 (2): 189-201
Published: 25 February 2022
Downloads:8

Initial Coulombic efficiency (ICE) has been widely adopted in battery research as a quantifiable indicator for the lifespan, energy density and rate performance of batteries. Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries (SIBs) owing to their outstanding performance. However, the booming application of hard carbon anodes has been significantly slowed by the low ICE, leading to a reduced energy density at the cell level. This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs. Here, we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes. The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design, surface engineering, electrolyte optimization and pre-sodiation. The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined.

Research Article Issue
An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels
Nano Research 2022, 15 (5): 4243-4250
Published: 22 January 2022
Downloads:53

Implant-associated bacterial infection remains one of the most common and serious complications. Therefore, a surface boasting long-term antibacterial ability for implants is highly desirable. Herein, mesoporous silica coatings (MSCs) with vertical and size-tunable mesochannels are fabricated on a variety of metal substrates via a nano-interfacial oriented assembly approach. Such facile and versatile approach relies on the vertically oriented fusion of composite micelles on the nanoscale flatness surface of substrates. Such orientation assembly process endows the MSCs with vertical mesochannels, tunable mesopore size (ca. 5.5–13.5 nm), and switchable substrates even with complex and diversified surfaces. Importantly, the MSCs on titanium substrates (Ti@MSCs) exhibit excellent performances for drug adsorption and sustained release. The saturation adsorption capacity can reach 0.544 μg·cm−2 towards minocycline hydrochloride (MC-HCl) antibiotic molecules, which is 6.5 times as the bare titanium (Ti) substrate. In addition, the drug release time can be controlled from 84 to 216 h by simply adjusting the mesopore size. As a proof of concept, the Ti@MSCs can realize a higher antibacterial rate (95.9%), compared with the bare Ti (70.3%). The results highlight the high potential of MSCs as implant coating for long-term preventing and eliminating peri-implantitis.

total 4