Journal Home > Volume 16 , Issue 7

The selective hydrogenolysis of glycerol exhibits great prospects, while the catalysts with high selectivity and activity are still missing and need to be created urgently. Herein, we report the synthesis of hollow mesoporous Pt/WOx/SiO2-TiO2 nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts show a typical brick-concrete liked framework with a high surface area (179.3 m2·g−1), large mesopore size (10.6 nm), uniform particle size (~ 400 nm), and ultrathin shell thickness (~ 75 nm). The brick anatase nanocrystals and concrete amorphous SiO2 networks can selectively rivet Pt nanoparticles and WOx nanocluster species, respectively, thus constructing two interfaces for effective adsorption, rapidly catalytic dehydration and hydrogenation processes. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts deliver a high selectivity of 53.8% for 1,3-propanediol (1,3-PDO) at a very high glycerol conversion of 85.0%. As a result, a favorable 1,3-PDO yield of 45.7% can be obtained with excellent stability, which is among the best performances of previously reported catalysts. This work paves a new way to synthesize catalysts with high selectivity, high activity and high stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol

Show Author's information Yan ChenYang ZengChin-Te HungZhenghao ZhangZirui LvSenchuan HuangYi YangYupu LiuWei Li( )
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China

Abstract

The selective hydrogenolysis of glycerol exhibits great prospects, while the catalysts with high selectivity and activity are still missing and need to be created urgently. Herein, we report the synthesis of hollow mesoporous Pt/WOx/SiO2-TiO2 nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts show a typical brick-concrete liked framework with a high surface area (179.3 m2·g−1), large mesopore size (10.6 nm), uniform particle size (~ 400 nm), and ultrathin shell thickness (~ 75 nm). The brick anatase nanocrystals and concrete amorphous SiO2 networks can selectively rivet Pt nanoparticles and WOx nanocluster species, respectively, thus constructing two interfaces for effective adsorption, rapidly catalytic dehydration and hydrogenation processes. The hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts deliver a high selectivity of 53.8% for 1,3-propanediol (1,3-PDO) at a very high glycerol conversion of 85.0%. As a result, a favorable 1,3-PDO yield of 45.7% can be obtained with excellent stability, which is among the best performances of previously reported catalysts. This work paves a new way to synthesize catalysts with high selectivity, high activity and high stability.

Keywords: hollow nanospheres, mesoporous materials, selective hydrogenolysis of glycerol, Pt/WOx/SiO2-TiO2 catalysts, 1, 3-propanediol

References(52)

[1]

Tan, H. W.; Abdul Aziz, A. R.; Aroua, M. K. Glycerol production and its applications as a raw material: A review. Renew. Sust. Energy Rev. 2013, 27, 118–127.

[2]

Yang, F. X.; Hanna, M. A.; Sun, R. C. Value-added uses for crude glycerol—A byproduct of biodiesel production. Biotechnol. Biofuels 2012, 5, 13.

[3]

Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549.

[4]

Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

[5]

Sun, D. L.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol hydrogenolysis into useful C3 chemicals. Appl. Catal. B 2016, 193, 75–92.

[6]

Bhowmik, S.; Darbha, S. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catal. Rev. 2021, 63, 639–703.

[7]

Wang, J.; Yang, M.; Wang, A. Q. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. Chin. J. Catal. 2020, 41, 1311–1319.

[8]

Fan, Y. Q.; Cheng, S. J.; Wang, H.; Tian, J.; Xie, S. H.; Pei, Y.; Qiao, M. H.; Zong, B. N. Pt-WOx on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol. Appl. Catal. B 2017, 217, 331–341.

[9]

Miao, G.; Shi, L.; Zhou, Z. M.; Zhu, L. J.; Zhang, Y. F.; Zhao, X. P.; Luo, H.; Li, S. G.; Kong, L. Z.; Sun, Y. H. Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol. ACS Catal. 2020, 10, 15217–15226.

[10]

Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Cui, J. L.; Zheng, H. Y.; Li, Y. W. SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl. Catal. B 2014, 158–159, 391–399.

[11]

Numpilai, T.; Cheng, C. K.; Seubsai, A.; Faungnawakij, K.; Limtrakul, J.; Witoon, T. Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions. Environ. Pollut. 2021, 272, 116029.

[12]

Zhou, W.; Luo, J.; Wang, Y.; Liu, J. F.; Zhao, Y. J.; Wang, S. P.; Ma, X. B. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Appl. Catal. B 2019, 242, 410–421.

[13]

Zhao, X. C.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B. L.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Selective hydrogenolysis of glycerol to 1,3-Propanediol: Manipulating the frustrated lewis pairs by introducing gold to Pt/WOx. ChemSusChem 2017, 10, 819–824.

[14]

Liu, L. J.; Asano, T.; Nakagawa, Y.; Gu, M. Y.; Li, C. C.; Tamura, M.; Tomishige, K. Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 2021, 292, 120164.

[15]

Gong, L. F.; Lu, Y.; Ding, Y. J.; Lin, R. H.; Li, J. W.; Dong, W. D.; Wang, T.; Chen, W. M. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl. Catal. A 2010, 390, 119–126.

[16]

Fernández, S. G.; Gandarias, I.; Requies, J.; Soulimani, F.; Arias, P. L.; Weckhuysen, B. M. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. Appl. Catal. B 2017, 204, 260–272.

[17]

Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

[18]

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

[19]

Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1Sx on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202203022.

[20]

Duan, L. L.; Hung, C. T.; Wang, J. X.; Wang, C. Y.; Ma, B.; Zhang, W.; Ma, Y. Z.; Zhao, Z. W.; Yang, C. C.; Zhao, T. C. et al. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew. Chem., Int. Ed. 2022, 61, e202211307.

[21]

Hung, C. T.; Duan, L. L.; Zhao, T. C.; Liu, L. L.; Xia, Y.; Liu, Y. P.; Qiu, P. P.; Wang, R. C.; Zhao, Z. W.; Li, W. et al. Gradient hierarchically porous structure for rapid capillary-assisted catalysis. J. Am. Chem. Soc. 2022, 144, 6091–6099.

[22]

Wang, H.; Wang, L.; Zhang, J.; Wang, C. T.; Liu, Z. Y.; Gao, X. H.; Meng, X. J.; Yoo, S. J.; Kim, J. G.; Zhang, W. et al. Interfacial CoOx layers on TiO2 as an efficient catalyst for solvent-free aerobic oxidation of hydrocarbons. ChemSusChem 2018, 11, 3965–3974.

[23]

Jin, Z.; Yi, X. F.; Wang, L.; Xu, S. D.; Wang, C. T.; Wu, Q. M.; Wang, L. X.; Zheng, A. M.; Xiao, F. S. Metal−acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Appl. Catal. B 2019, 254, 560–568.

[24]

Zhang, R.; Wang, X.; Wang, K.; Wang, H. L.; Liu, L.; Wu, X. T.; Geng, B. K.; Chu, X.; Song, S. Y.; Zhang, H. J. Synergism of ultrasmall Pt clusters and basic La2O2CO3 supports boosts the reverse water gas reaction efficiency. Adv. Energy Mater. 2023, 13, 2203806.

[25]

Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

[26]

Sun, Y. F.; Cao, Y. Q.; Wang, L. L.; Mu, X. T.; Zhao, Q. F.; Si, R.; Zhu, X. J.; Chen, S. J.; Zhang, B. S.; Chen, D. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 2020, 11, 4600.

[27]

An, K.; Musselwhite, N.; Kennedy, G.; Pushkarev, V. V.; Baker, L. R.; Somorjai, G. A. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J. Colloid Interface Sci. 2013, 392, 122–128.

[28]

Kattel, S.; Yan, B. H.; Chen, J. G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. J. Catal. 2016, 343, 115–126.

[29]

Liu, J. J.; Zou, S. H.; Lu, L. F.; Zhao, H. T.; Xiao, L. P.; Fan, J. Room temperature selective oxidation of benzyl alcohol under base-free aqueous conditions on Pt/TiO2. Catal. Commun. 2017, 99, 6–9.

[30]

Byun, M. Y.; Kim, Y. E.; Baek, J. H.; Jae, J.; Lee, M. S. Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation. RSC Adv. 2022, 12, 860–868.

[31]

Zeng, Y.; Jiang, L.; Zhang, X. X.; Xie, S. H.; Pei, Y.; Zhou, G. B.; Hua, W. M.; Qiao, M. H.; Li, Z. H.; Zong, B. N. Effect of titania polymorphs on the structure and catalytic performance of the Pt-WOx/TiO2 catalyst in glycerol hydrogenolysis to 1,3-propanediol. ACS Sustainable Chem. Eng. 2022, 10, 9532–9545.

[32]

Zhao, J. X.; Hou, B.; Guo, H. Q.; Jia, L. T.; Niu, P. Y.; Chen, C. B.; Xi, H. J.; Li, D. B.; Zhang, J. L. Insight into the influence of WOx–support interaction over Pt/W/SiZr catalysts on 1,3-propanediol synthesis from glycerol. ChemCatChem 2022, 14, e202200341.

[33]

Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.

[34]

Li, W.; Wang, F.; Liu, Y. P.; Wang, J. X.; Yang, J. P.; Zhang, L. J.; Elzatahry, A. A.; Al-Dahyan, D.; Xia, Y. Y.; Zhao, D. Y. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 2015, 15, 2186–2193.

[35]

Deng, Z. Q.; Li, L.; Ren, Y. C.; Ma, C. Q.; Liang, J.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Tang, B. et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Res. 2022, 15, 3880–3885.

[36]

Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 2018, 28, 1705268.

[37]

Drzymała, E.; Gruzeł, G.; Depciuch, J.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Ternary Pt/Re/SnO2/C catalyst for EOR: Electrocatalytic activity and durability enhancement. Nano Res. 2020, 13, 832–842.

[38]

Hernandez-Pichardo, M. L.; Montoya de la Fuente, J. A.; Del Angel, P.; Vargas, A.; Navarrete, J.; Hernandez, I.; Lartundo, L.; González-Brambila, M. High-throughput study of the iron promotional effect over Pt/WOx-ZrO2 catalysts on the skeletal isomerization of n-hexane. Appl. Catal. A 2012, 431–432, 69–78.

[39]

Ross-Medgaarden, E. I.; Knowles, W. V.; Kim, T.; Wong, M. S.; Zhou, W.; Kiely, C. J.; Wachs, I. E. New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. J. Catal. 2008, 256, 108–125.

[40]

Shen, S. H.; Kronawitter, C. X.; Jiang, J. G.; Mao, S. S.; Guo, L. J. Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 2012, 5, 327–336.

[41]

Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511–528.

[42]

Wei, R. P.; Qu, X. M.; Xiao, Y.; Fan, J. D.; Geng, G. L.; Gao, L. J.; Xiao, G. M. Hydrogenolysis of glycerol to propanediols over silicotungstic acid catalysts intercalated with CuZnFe hydrotalcite-like compounds. Catal. Today 2021, 368, 224–231.

[43]

Wang, B.; Liu, F.; Guan, W. X.; Wang, A. Q.; Zhang, T. Promoting the effect of Au on the selective hydrogenolysis of glycerol to 1, 3-propanediol over the Pt/WOx/Al2O3 catalyst. ACS Sustainable Chem. Eng. 2021, 9, 5705–5715.

[44]

Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Hua, W. M.; Li, Z. H.; Qiao, M. H. et al. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol. Green Chem. 2017, 19, 2174–2183.

[45]

Niu, Y. F.; Zhao, B. B.; Liang, Y.; Liu, L.; Dong, J. X. Promoting role of oxygen deficiency on a WO3-supported Pt catalyst for glycerol hydrogenolysis to 1, 3-propanediol. Ind. Eng. Chem. Res. 2020, 59, 7389–7397.

[46]

He, J. Y.; Burt, S. P.; Ball, M.; Zhao, D. T.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Synthesis of 1,6-hexanediol from cellulose derived tetrahydrofuran-dimethanol with Pt-WOx/TiO2 catalysts. ACS Catal. 2018, 8, 1427–1439.

[47]

Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X. et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water–gas shift reaction performance. J. Am. Chem. Soc. 2023, 145, 2264–2270.

[48]

Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784–790.

[49]

Wu, Z. F.; Li, Y. Y.; Huang, W. X. Size-dependent Pt-TiO2 strong metal–support interaction. J. Phys. Chem. Lett. 2020, 11, 4603–4607.

[50]

Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T. XAFS study of tungsten L1- and L3-edges: Structural analysis of WO3 species loaded on TiO2 as a catalyst for photo-oxidation of NH3. J. Phys. Chem. C 2008, 112, 6869–6879.

[51]

Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293.

[52]

Cheng, S. J.; Fan, Y. Q.; Zhang, X. X.; Zeng, Y.; Xie, S. H.; Pei, Y.; Zeng, G. F.; Qiao, M. H.; Zong, B. N. Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol. Appl. Catal. B 2021, 297, 120428.

File
12274_2023_5712_MOESM1_ESM.pdf (10.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 February 2023
Revised: 01 April 2023
Accepted: 03 April 2023
Published: 25 May 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2022YFA1503501 and 2018YFA0209401), the National Natural Science Foundation of China (Nos. 22088101, 21975050 and U21A20329), the Program of Shanghai Academic Research Leader (No. 21XD1420800), the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100 (No. 21TQ008), and the Fundamental Research Funds for the Central Universities (No. 20720220010).

Return