Sort:
Review Article Issue
Rational design and synthesis of cerium dioxide-based nanocomposites
Nano Research 2023, 16 (3): 3622-3640
Published: 03 October 2022
Downloads:134

Cerium dioxide (CeO2)-based nanocomposites, as a branch of nanocomposites, are always constructed from CeO2 combining with other constituents, which exhibit enhanced performance and excellent stability due to their inherent synergistic systems. The modulation of morphology, size, and types of doping of active metals can be achieved by designing the structures, which providing the opportunity to construct diverse CeO2-based nanocomposites. The optimization of the structure enables the design of new multifunctional CeO2-based nanocomposites for various applications such as the field of catalysis. In this minireview, we describe the recent development of the nanocomposites based on noble metal-, transition metal-, and metal-organic framework (MOF)-CeO2, which are synthesized through various scientific and rational methods. Meanwhile, the design, synthesis, and basic working principles for CeO2-based nanocomposites are also elucidated. In addition, some examples of their catalytic applications such as electrocatalysis, photocatalysis, and thermocatalysis are also discussed. Finally, the structure–activity relationship in guiding the design and synthesis of CeO2-based nanocomposites is summarized and prospected.

Research Article Issue
Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction
Nano Research 2020, 13 (8): 2130-2135
Published: 05 August 2020
Downloads:39

Developing efficient and stable oxygen evolution reaction (OER) electrocatalysts via doping strategy has well-documented for electrochemical water splitting. Herein, a homogeneous structure (denoted as Co/Ce-Ni3S2/NF) composed of Co and Ce dual doped Ni3S2 nanosheets on nickel foam was synthesized by a facile one-step hydrothermal method. Co and Ce dopants are distributed inside the host sulfide, thereby raising the active sites and the electrical conductivity. Besides, the CeOx nanoparticles generated by part of the Ce dopants as a cocatalyst further improve the catalytic activity by adding defective sites and enhancing the electron transfer. As a consequence, the obtained Co/Ce-Ni3S2/NF electrode exhibits better electrocatalytic activity than single Co or Ce doped Ni3S2 and pure Ni3S2, with low overpotential (286 mV) at 20 mA·cm-2, a small Tafel slope and excellent long-term durability in strong alkaline solution. These results presented here not only offer a novel platform for designing transition metal and lanthanide dual-doped catalysts, but also supply some guidelines for constructing catalysts in other catalytic applications.

total 2