Journal Home > Volume 13 , Issue 8

Developing efficient and stable oxygen evolution reaction (OER) electrocatalysts via doping strategy has well-documented for electrochemical water splitting. Herein, a homogeneous structure (denoted as Co/Ce-Ni3S2/NF) composed of Co and Ce dual doped Ni3S2 nanosheets on nickel foam was synthesized by a facile one-step hydrothermal method. Co and Ce dopants are distributed inside the host sulfide, thereby raising the active sites and the electrical conductivity. Besides, the CeOx nanoparticles generated by part of the Ce dopants as a cocatalyst further improve the catalytic activity by adding defective sites and enhancing the electron transfer. As a consequence, the obtained Co/Ce-Ni3S2/NF electrode exhibits better electrocatalytic activity than single Co or Ce doped Ni3S2 and pure Ni3S2, with low overpotential (286 mV) at 20 mA·cm-2, a small Tafel slope and excellent long-term durability in strong alkaline solution. These results presented here not only offer a novel platform for designing transition metal and lanthanide dual-doped catalysts, but also supply some guidelines for constructing catalysts in other catalytic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction

Show Author's information Xiaoxia Wu1,2,3Tong Zhang2Jiaxu Wei2Pengfei Feng2Xingbin Yan1,3( )Yu Tang1,2( )
Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Developing efficient and stable oxygen evolution reaction (OER) electrocatalysts via doping strategy has well-documented for electrochemical water splitting. Herein, a homogeneous structure (denoted as Co/Ce-Ni3S2/NF) composed of Co and Ce dual doped Ni3S2 nanosheets on nickel foam was synthesized by a facile one-step hydrothermal method. Co and Ce dopants are distributed inside the host sulfide, thereby raising the active sites and the electrical conductivity. Besides, the CeOx nanoparticles generated by part of the Ce dopants as a cocatalyst further improve the catalytic activity by adding defective sites and enhancing the electron transfer. As a consequence, the obtained Co/Ce-Ni3S2/NF electrode exhibits better electrocatalytic activity than single Co or Ce doped Ni3S2 and pure Ni3S2, with low overpotential (286 mV) at 20 mA·cm-2, a small Tafel slope and excellent long-term durability in strong alkaline solution. These results presented here not only offer a novel platform for designing transition metal and lanthanide dual-doped catalysts, but also supply some guidelines for constructing catalysts in other catalytic applications.

Keywords: electrocatalyst, oxygen evolution reaction, dual-doping, CeOx, Ni3S2.

References(51)

[1]
Zhou, Y.; Sun, S. N.; Wei, C.; Sun, Y. M.; Xi, P. X.; Feng, Z. X.; Xu, Z. J. Significance of engineering the octahedral units to promote the oxygen evolution reaction of spinel oxides. Adv. Mater. 2019, 31, 1902509.
[2]
Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854-12858.
[3]
Wang, X.; Yu, L.; Guan, B. Y.; Song, S. Y.; Lou, X. W. D. Metal-organic framework hybrid-assisted formation of Co3O4/Co-Fe oxide double-shelled nanoboxes for enhanced oxygen evolution. Adv. Mater. 2018, 30, 1801211.
[4]
Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791-802.
[5]
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[6]
Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.
[7]
Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055-2066.
[8]
Song, H.; Yang, Y. N.; Geng, J.; Gu, Z. Y.; Zou, J.; Yu, C. Z. Electron tomography: A unique tool solving intricate hollow nanostructures. Adv. Mater. 2019, 31, 1801564.
[9]
Yu, X. Y.; Lou, X. W. Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 2018, 8, 1701592.
[10]
Zhang, D. W.; Li, J. W.; Luo, J. X.; Xu, P. M.; Wei, L. C.; Zhou, D.; Xu, W. M.; Yuan, D. S. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects. Nanotechnology 2018, 29, 245402.
[11]
Li, J. W.; Xu, P. M.; Zhou, R. F.; Li, R. C.; Qiu, L. J.; Jiang, S. P.; Yuan, D. S. Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochim. Acta 2019, 299, 152-162.
[12]
Zhong, X. W.; Tang, J.; Wang, J. W.; Shao, M. M.; Chai, J. W.; Wang, S. P.; Yang, M.; Yang, Y.; Wang, N.; Wang, S. J. et al. 3D heterostructured pure and N-doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. Electrochim. Acta 2018, 269, 55-61.
[13]
Qi, J. Q.; Chang, Y.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.; Zhao, Y. L.; Jin, Y. X. Facile construction of 3D reduced graphene oxide wrapped Ni3S2 nanoparticles on Ni foam for high-performance asymmetric supercapacitor electrodes. Part. Part. Syst. Charact. 2017, 34, 1700196.
[14]
Zhu, W. X.; Zhang, R.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Design and application of foams for electrocatalysis. ChemCatChem 2017, 9, 1721-1743.
[15]
Shit, S.; Chhetri, S.; Jang, W.; Murmu, N. C.; Koo, H.; Samanta, P.; Kuila, T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: An efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 10, 27712-27722.
[16]
Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci. 2018, 5, 1700464.
[17]
Xiong, X. L.; You, C.; Liu, Z. A.; Asiri, A. M.; Sun, X. P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustainable Chem. 2018, 6, 2883-2887.
[18]
Wang, F. F.; Zhu, Y. F.; Tian, W.; Lv, X. B.; Zhang, H. L.; Hu, Z. F.; Zhang, Y. X.; Ji, J. Y.; Jiang, W. Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J. Mater. Chem. A 2018, 6, 10490-10496.
[19]
Cheng, N. Y.; Liu, Q.; Asiri, A. M.; Xing, W.; Sun, X. P. A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A 2015, 3, 23207-23212.
[20]
Du, H. T.; Kong, R. M.; Qu, F. L.; Lu, L. M. Enhanced electrocatalysis for alkaline hydrogen evolution by Mn doping in a Ni3S2 nanosheet array. Chem. Commun. 2018, 54, 10100-10103.
[21]
Liu, Q.; Xie, L. S.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Zn-doped Ni3S2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chem. Commun. 2017, 53, 12446-12449.
[22]
Zhang, Z. M.; Gao, D. Q.; Xue, D. S.; Liu, Y. G.; Liu, P. T.; Zhang, J. Y.; Qian, J. M. Co and CeO2 co-decorated N-doping carbon nanofibers for rechargeable Zn-air batteries. Nanotechnology 2019, 30, 395401.
[23]
Peng, R. S.; Li, S. J.; Sun, X. B.; Ren, Q. M.; Chen, L. M.; Fu, M. L.; Wu, J. L.; Ye, D. Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Appl. Catal. B: Environ. 2018, 220, 462-470.
[24]
Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8654-8658.
[25]
Wang, Z. M.; Yu, R. B. Hollow micro/nanostructured ceria-based materials: Synthetic strategies and versatile applications. Adv. Mater. 2019, 31, 1800592.
[26]
Feng, L. L.; Yu, G. T.; Wu, Y. Y.; Li, G. D.; Li, H.; Sun, Y. H.; Asefa, T.; Chen, W.; Zou, X. X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.
[27]
Xu, H. J.; Yang, Y. W.; Yang, X. X.; Cao, J.; Liu, W. S.; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 8284-8291.
[28]
Guo, J. X.; Zhang, K.; Sun, Y. F.; Liu, Q. Y.; Tang, L.; Zhang, X. Efficient bifunctional vanadium-doped Ni3S2 nanorod array for overall water splitting. Inorg. Chem. Front. 2019, 6, 443-450.
[29]
Gao, W.; Xia, Z. M.; Cao, F. X.; Ho, J. C.; Jiang, Z.; Qu, Y. Q. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: Embedded or surface-loaded. Adv. Funct. Mater. 2018, 28, 1706056.
[30]
Qiu, B. C.; Wang, C.; Zhang, N.; Cai, L. J.; Xiong, Y. J.; Chai, Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catal. 2019, 9, 6484-6490.
[31]
Yu, J. H.; Cheng, G. Z.; Luo, W. 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 2018, 11, 2149-2158.
[32]
Wu, X. X.; Yang, Y. W.; Zhang, T.; Wang, B. K.; Xu, H. J.; Yan, X. B.; Tang, Y. CeOx-decorated hierarchical NiCo2S4 hollow nanotubes arrays for enhanced oxygen evolution reaction electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 39841-39847.
[33]
Zhu, Y.; Yang, H. D.; Lan, K.; Iqbal, K.; Liu, Y.; Ma, P.; Zhao, Z. M.; Luo, S.; Luo, Y. T.; Ma, J. T. Optimization of iron-doped Ni3S2 nanosheets by disorder engineering for oxygen evolution reaction. Nanoscale 2019, 11, 2355-2365.
[34]
Zhang, R.; Ren, X.; Hao, S.; Ge, R. X.; Liu, Z. A.; Asiri, A. M.; Chen, L.; Zhang, Q. J.; Sun, X. P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2018, 6, 1985-1990.
[35]
Liu, T.; Li, P.; Yao, N.; Kong, T. G.; Cheng, G. Z.; Chen, S. L.; Luo, W. Self-sacrificial template-directed vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting. Adv. Mater. 2019, 31, 1806672.
[36]
Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni Foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661-4672.
[37]
Meng, R. Q.; Feng, X. X.; Yang, Y. W.; Lv, X. D.; Cao, J.; Tang, Y. Cerium-oxide-modified anodes for efficient and UV-stable ZnO-based perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 13273-13278.
[38]
He, X. B.; Yi, X. R.; Yin, F. X.; Chen, B. H.; Li, G. R.; Yin, H. Q. Less active CeO2 regulating bifunctional oxygen electrocatalytic activity of Co3O4@N-doped carbon for Zn-air batteries. J. Mater. Chem. A 2019, 7, 6753-6765.
[39]
Feng, J. X.; Ye, S. H.; Xu, H.; Tong, Y. X.; Li, G. R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv. Mater. 2016, 28, 4698-4703.
[40]
Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681.
[41]
Liu, Y.; Ma, C.; Zhang, Q. H.; Wang, W.; Pan, P. F.; Gu, L.; Xu, D. D.; Bao, J. C.; Dai, Z. H. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, 1900062.
[42]
Li, Y. F; Wang, S.; Chang, W.; Zhang, L. H.; Wu, Z. S.; Song, S. Y.; Xing, Y. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response. J. Mater. Chem. A 2019, 7, 20640-20648.
[43]
Obata, K.; Takanabe, K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 1616-1620.
[44]
Yuan, C. Z.; Sun, Z. T.; Jiang, Y. F.; Yang, Z. K.; Jiang, N.; Zhao, Z. W.; Qazi, U. Y.; Zhang, W. H.; Xu, A. W. One-step in situ growth of iron-nickel sulfide nanosheets on FeNi alloy foils: High-performance and self-supported electrodes for water oxidation. Small 2017, 13, 1604161.
[45]
Zhao, Y. X.; Chang, C.; Teng, F.; Zhao, Y. F.; Chen, G. B.; Shi, R.; Waterhouse, G. I. N.; Huang, W. F.; Zhang, T. R. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 2017, 7, 1700005.
[46]
Ling, T.; Zhang, T.; Ge, B. H.; Han, L. L.; Zheng, L. R.; Lin, F.; Xu, Z. R.; Hu, W. B.; Du, X. W.; Davey, K. et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771.
[47]
Sivanantham, A.; Shanmugam, S. Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B: Environ. 2017, 203, 485-493.
[48]
Wang, T. J.; Liu, X. Y.; Li, Y.; Li, F. M.; Deng, Z. W.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Res. 2020, 13, 79-85.
[49]
Yang, Y. Q.; Zhang, K.; Ling, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 Heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357-2366.
[50]
Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (NixCo1-xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246-254.
[51]
Yang, C.; Gao, M. Y.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Abbott, A. P. In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy 2017, 36, 85-94.
File
12274_2020_2819_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2020
Revised: 06 April 2020
Accepted: 18 April 2020
Published: 05 August 2020
Issue date: August 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871121 and 21431002) and Fundamental Research Funds for the Central Universities (No. Lzujbky-2018-ot01).

Return