Journal Home > Volume 16 , Issue 3

Cerium dioxide (CeO2)-based nanocomposites, as a branch of nanocomposites, are always constructed from CeO2 combining with other constituents, which exhibit enhanced performance and excellent stability due to their inherent synergistic systems. The modulation of morphology, size, and types of doping of active metals can be achieved by designing the structures, which providing the opportunity to construct diverse CeO2-based nanocomposites. The optimization of the structure enables the design of new multifunctional CeO2-based nanocomposites for various applications such as the field of catalysis. In this minireview, we describe the recent development of the nanocomposites based on noble metal-, transition metal-, and metal-organic framework (MOF)-CeO2, which are synthesized through various scientific and rational methods. Meanwhile, the design, synthesis, and basic working principles for CeO2-based nanocomposites are also elucidated. In addition, some examples of their catalytic applications such as electrocatalysis, photocatalysis, and thermocatalysis are also discussed. Finally, the structure–activity relationship in guiding the design and synthesis of CeO2-based nanocomposites is summarized and prospected.


menu
Abstract
Full text
Outline
About this article

Rational design and synthesis of cerium dioxide-based nanocomposites

Show Author's information Haiyan An1Liangliang Liu1Nan Song1Hongmei Zhu2Yu Tang1( )
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
School of Pharmacy, Lanzhou University, Lanzhou 730000, China

Abstract

Cerium dioxide (CeO2)-based nanocomposites, as a branch of nanocomposites, are always constructed from CeO2 combining with other constituents, which exhibit enhanced performance and excellent stability due to their inherent synergistic systems. The modulation of morphology, size, and types of doping of active metals can be achieved by designing the structures, which providing the opportunity to construct diverse CeO2-based nanocomposites. The optimization of the structure enables the design of new multifunctional CeO2-based nanocomposites for various applications such as the field of catalysis. In this minireview, we describe the recent development of the nanocomposites based on noble metal-, transition metal-, and metal-organic framework (MOF)-CeO2, which are synthesized through various scientific and rational methods. Meanwhile, the design, synthesis, and basic working principles for CeO2-based nanocomposites are also elucidated. In addition, some examples of their catalytic applications such as electrocatalysis, photocatalysis, and thermocatalysis are also discussed. Finally, the structure–activity relationship in guiding the design and synthesis of CeO2-based nanocomposites is summarized and prospected.

Keywords: catalysis, nanocomposites, CeO2, synthetic strategy

References(140)

[1]

Sui, B.; Li, Y. F.; Yang, B. Nanocomposite hydrogels based on carbon dots and polymers. Chin. Chem. Lett. 2020, 31, 1443–1447.

[2]

Kausar, A. Emerging research trends in polyurethane/graphene nanocomposite: A review. Polym. Plast. Technol. Eng. 2017, 56, 1468–1486.

[3]

Zhao, D.; Yang, C. F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable Sustainable Energy Rev. 2016, 54, 1048–1059.

[4]

Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337.

[5]

Wang, R. Y.; Tangirala, R.; Raoux, S.; Jordan-Sweet, J. L.; Milliron, D. J. Ionic and electronic transport in Ag2S nanocrystal-GeS2 matrix composites with size-controlled Ag2S nanocrystals. Adv. Mater. 2012, 24, 99–103.

[6]

Sygellou, L.; Tzanidis, I.; Tasis, D. Investigation of electronic properties and chemical interactions of graphene-MoSx composites. Appl. Surf. Sci. 2020, 517, 146188.

[7]

Meng, X. F.; Xu, Y. L.; Sun, X. F.; Wang, J.; Xiong, L. L.; Du, X. F.; Mao, S. C. Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries. J. Mater. Chem. A 2015, 3, 12938–12946.

[8]

Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

[9]

Zhu, M. Y.; Yin, K. B.; Wen, Y. F.; Song, S. G.; Xiong, Y. W.; Dai, Y. Q.; Sun, L. T. Combining in-situ TEM observations and theoretical calculation for revealing the thermal stability of CeO2 nanoflowers. Nano Res. 2022, 15, 1319–1326.

[10]

Zhen, J. M.; Wang, X.; Liu, D. P.; Wang, Z.; Li, J. Q.; Wang, F.; Wang, Y. H.; Zhang, H. J. Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation. Nano Res. 2015, 8, 1944–1955.

[11]

Zhou, C.; Wu, K.; Huang, H. W.; Cao, C. F.; Luo, Y.; Chen, C. Q.; Lin, L.; Au, C.; Jiang, L. L. Spatial confinement of electron-rich Ni nanoparticles for efficient ammonia decomposition to hydrogen production. ACS Catal. 2021, 11, 10345–10350.

[12]

Lu, G. L.; Zheng, H. Y.; Lv, J. J.; Wang, G.; Huang, X. B. Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. J. Power Sources 2020, 480, 229091.

[13]

Wang, J. D.; Xiao, X.; Liu, Y.; Pan, K. M.; Pang, H.; Wei, S. Z. The application of CeO2-based materials in electrocatalysis. J. Mater. Chem. A 2019, 7, 17675–17702.

[14]

Li, Q. Q.; Song, L. P.; Liang, Z.; Sun, M. Z.; Wu, T.; Huang, B. L.; Luo, F.; Du, Y. P.; Yan, C. H. A review on CeO2-based electrocatalyst and photocatalyst in energy conversion. Adv. Energy Sustain. Res. 2021, 2, 2000063.

[15]

Huang, X. B.; Zhang, K. Y.; Peng, B. X.; Wang, G.; Muhler, M.; Wang, F. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021, 11, 9618–9678.

[16]

Wu, K.; Fu, X. P.; Yu, W. Z.; Wang, W. W.; Jia, C. J.; Du, P. P.; Si, R.; Wang, Y. H.; Li, L. D.; Zhou, L. et al. Pt-embedded CuOx-CeO2 multicore-shell composites: Interfacial redox reaction-directed synthesis and composition-dependent performance for CO oxidation. ACS Appl. Mater. Interfaces 2018, 10, 34172–34183.

[17]

Zhang, S.; Saji, S. E.; Yin, Z. Y.; Zhang, H. B.; Du, Y. P.; Yan, C. H. Rare-earth incorporated alloy catalysts: Synthesis, properties, and applications. Adv. Mater. 2021, 33, 2005988.

[18]

Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412–4422.

[19]

Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 2016, 116, 5987–6041.

[20]

Fan, L. D.; Wang, C. Y.; Chen, M. M.; Zhu, B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J. Power Sources 2013, 234, 154–174.

[21]

Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

[22]

Zheng, Y. F.; Zhao, Q.; Shan, C. P.; Lu, S. C.; Su, Y.; Han, R.; Song, C. F.; Ji, N.; Ma, D. G.; Liu, Q. L. Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal-organic frameworks. ACS Appl. Mater. Interfaces 2020, 12, 28139–28147.

[23]

Qiu, H.; Pu, F.; Liu, Z. W.; Deng, Q. Q.; Sun, P. P.; Ren, J. S.; Qu, X. G. Depriving bacterial adhesion-related molecule to inhibit biofilm formation using CeO2-decorated metal-organic frameworks. Small 2019, 15, 1902522.

[24]

da Silva, M. F. P.; de Jesus Fraga da Costa, H. C.; Triboni, E. R.; Politi, M. J.; Isolani, P. C. Synthesis and characterization of CeO2-graphene composite. J. Therm. Anal. Calorim. 2012, 107, 257–263.

[25]

He, Y. J. Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Mater. Chem. Phys. 2005, 92, 134–137.

[26]

Zhou, Y.; Xiong, J. P.; Yan, F. A. The preparation and characterization of a nano-CeO2/phosphate composite coating on magnesium alloy AZ91D. Surf. Coat. Technol. 2017, 328, 335–343.

[27]

Zhang, X. Y.; Chen, X. G. Preparation of polyamide 6/CeO2 composite nanofibers through electrospinning for biomedical applications. Int. J. Polym. Sci. 2019, 2019, 2494586.

[28]

Pei, H. B.; Zhang, H. J.; Mo, Z. L.; Guo, R. B.; Liu, N. J.; Jia, Q. Q.; Gao, Q. Q. Highly efficient photocatalytic degradation of rhodamine B by conical graphene quantum dots/cerium oxide composite. Ceram. Int. 2020, 46, 3827–3836.

[29]

Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.

[30]

Schwarz, K. Materials design of solid electrolytes. Proc. Natl. Acad. Sci. USA 2006, 103, 3497.

[31]

Kamachi, T.; Siddiki, S. M. A. H.; Morita, Y.; Rashed, M. N.; Kon, K.; Toyao, T.; Shimizu, K. I.; Yoshizawa, K. Combined theoretical and experimental study on alcoholysis of amides on CeO2 surface: A catalytic interplay between Lewis acid and base sites. Catal. Today. 2018, 303, 256–262.

[32]

Yuan, Q.; Duan, H. H.; Li, L. L.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Controlled synthesis and assembly of ceria-based nanomaterials. J. Colloid Interface Sci. 2009, 335, 151–167.

[33]

Parwaiz, S.; Khan, M. M.; Pradhan, D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Mater. Express 2019, 9, 185–202.

[34]

Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skála, T.; Bruix, A.; Illas, F.; Prince, K. C. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011, 10, 310–315.

[35]
Trovarelli, A.; Llorca, J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 2017, 7, 4716–4735.
[36]

Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25.

[37]

Song, B. C.; Choi, D.; Xin, Y.; Bowers, C. R.; Hagelin-Weaver, H. Ultra-low loading Pt/CeO2 catalysts: Ceria facet effect affords improved pairwise selectivity for parahydrogen enhanced NMR spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 4038–4042.

[38]

Sreeremya, T. S.; Krishnan, A.; Remani, K. C.; Patil, K. R.; Brougham, D. F.; Ghosh, S. Shape-selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl. Mater. Interfaces 2015, 7, 8545–8555.

[39]

Gao, Y. X.; Wang, W. D.; Chang, S. J.; Huang, W. X. Morphology effect of CeO2 support in the preparation, metal–support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem 2013, 5, 3610–3620.

[40]

Wei, Q. H.; Ma, Q. X.; Zuo, P. P.; Fan, H. L.; Qu, S. J.; Shen, W. Z. Hollow structure and electron promotion effect of mesoporous Pd/CeO2 catalyst for enhanced catalytic hydrogenation. ChemCatChem 2018, 10, 1019–1026.

[41]

Xu, H. J.; Cao, J.; Shan, C. F.; Wang, B. K.; Xi, P. X.; Liu, W. S.; Tang, Y. MOF-derived hollow CoS decorated with CeOx nanoparticles for boosting oxygen evolution reaction electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8654–8658.

[42]

Wang, B. K.; Xi, P. X.; Shan, C. F.; Chen, H.; Xu, H. J.; Iqbal, K.; Liu, W. S.; Tang, Y. In situ growth of ceria on cerium-nitrogen-carbon as promoter for oxygen evolution reaction. Adv. Mater. Interfaces 2017, 4, 1700272.

[43]

Sun, M. Z.; Wu, T.; Dougherty, A. W.; Lam, M.; Huang, B. L.; Li, Y. L.; Yan, C. H. Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv. Energy Mater. 2021, 11, 2003796.

[44]

Wu, X. P.; Gong, X. Q. Unique electronic and structural effects in vanadia/ceria-catalyzed reactions. J. Am. Chem. Soc. 2015, 137, 13228–13231.

[45]

Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

[46]

Li, Z.; Ji, S. F.; Liu, Y. W.; Cao, X.; Tian, S. B.; Chen, Y. J.; Niu, Z. Q.; Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

[47]

Kaur, B.; Srivastava, R.; Satpati, B. Highly efficient CeO2 decorated nano-ZSM-5 catalyst for electrochemical oxidation of methanol. ACS Catal. 2016, 6, 2654–2663.

[48]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[49]

Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal–support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

[50]

Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 2013, 341, 771–773.

[51]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[52]

Li, J. J.; Guan, Q. Q.; Wu, H.; Liu, W.; Lin, Y.; Sun, Z. H.; Ye, X. X.; Zheng, X. S.; Pan, H. B.; Zhu, J. F. et al. Highly active and stable metal single-atom catalysts achieved by strong electronic metal–support interactions. J. Am. Chem. Soc. 2019, 141, 14515–14519.

[53]

Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513.

[54]

DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

[55]

Pereira-Hernández, X. I.; DeLaRiva, A.; Muravev, V.; Kunwar, D.; Xiong, H. F.; Sudduth, B.; Engelhard, M.; Kovarik, L.; Hensen, E. J. M.; Wang, Y. et al. Tuning Pt-CeO2 interactions by high-temperature vapor-phase synthesis for improved reducibility of lattice oxygen. Nat. Commun. 2019, 10, 1358.

[56]

Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.

[57]

Gänzler, A. M.; Casapu, M.; Maurer, F.; Störmer, H.; Gerthsen, D.; Ferré, G.; Vernoux, P.; Bornmann, B.; Frahm, R.; Murzin, V. et al. Tuning the Pt/CeO2 interface by in situ variation of the Pt particle size. ACS Catal. 2018, 8, 4800–4811.

[58]

Su, Y. Q.; Filot, I. A. W.; Liu, J. X.; Hensen, E. J. M. Stable Pd-doped ceria structures for CH4 activation and CO oxidation. ACS Catal. 2018, 8, 75–80.

[59]

Su, Y. Q.; Zhang, L.; Muravev, V.; Hensen, E. J. M. Lattice oxygen activation in transition metal doped ceria. Chin. J. Catal. 2020, 41, 977–984.

[60]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[61]

Liu, X.; Jia, S. F.; Yang, M.; Tang, Y. T.; Wen, Y. W.; Chu, S. Q.; Wang, J. B.; Shan, B.; Chen, R. Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nat. Commun. 2020, 11, 4240.

[62]

Akita, T.; Kohyama, M.; Haruta, M. Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc. Chem. Res. 2013, 46, 1773–1782.

[63]

Sun, X. C.; Yuan, K.; Zhou, J. H.; Yuan, C. Y.; Liu, H. C.; Zhang, Y. W. Au3+ species-induced interfacial activation enhances metal–support interactions for boosting electrocatalytic CO2 reduction to CO. ACS Catal. 2022, 12, 923–934.

[64]

Wu, Z. L.; Li, M. J.; Howe, J.; Meyer, H. M.; Overbury, S. H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606.

[65]

Hu, B. T.; Sun, K. A.; Zhuang, Z. W.; Chen, Z.; Liu, S. J.; Cheong, W. C.; Chen, C.; Hu, M. Z.; Cao, X.; Ma, J. G. et al. Distinct crystal-facet-dependent behaviors for single-atom palladium-on-ceria catalysts: Enhanced stabilization and catalytic properties. Adv. Mater. 2022, 34, 2107721.

[66]

Wang, M.; Wang, F.; Ma, J. P.; Li, M. R.; Zhang, Z.; Wang, Y. H.; Zhang, X. C.; Xu, J. Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chem. Commun. 2014, 50, 292–294.

[67]

Wegeberg, C.; Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 2021, 1, 1860–1876.

[68]

Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S. H.; Shao, Z. P.; Lim, J. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances. Chem. Soc. Rev. 2020, 49, 9154–9196.

[69]

Song, X. Z.; Zhu, W. Y.; Wang, X. F.; Tan, Z. Q. Recent advances of CeO2-based electrocatalysts for oxygen and hydrogen evolution as well as nitrogen reduction. ChemElectroChem 2021, 8, 996–1020.

[70]

Zhao, P.; Qin, F.; Huang, Z.; Sun, C.; Shen, W.; Xu, H. L. MOF-derived hollow porous Ni/CeO2 octahedron with high efficiency for N2O decomposition. Chem. Eng. J. 2018, 349, 72–81.

[71]

Govindan, R.; Hong, X. J.; Sathishkumar, P.; Cai, Y. P.; Gu, F. L. Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim. Acta 2020, 353, 136502.

[72]

Song, C. L.; Zhan, Q.; Liu, F.; Wang, C.; Li, H. C.; Wang, X.; Guo, X. F.; Cheng, Y. C.; Sun, W.; Wang, L. et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202200406.

[73]

Xiao, Y. C.; Xie, K. Active exsolved metal–oxide interfaces in porous single-crystalline ceria monoliths for efficient and durable CH4/CO2 reforming. Angew. Chem., Int. Ed. 2022, 61, e202113079.

[74]

Obata, K.; Takanabe, K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 1616–1620.

[75]

Dai, T. Y.; Zhang, X.; Sun, M. Z.; Huang, B. L.; Zhang, N.; Da, P. F.; Yang, R.; He, Z. D.; Wang, W.; Xi, P. X. et al. Uncovering the promotion of CeO2/CoS1.97 heterostructure with specific spatial architectures on oxygen evolution reaction. Adv. Mater. 2021, 33, 2102593.

[76]

Wu, X. X.; Yang, Y. W.; Zhang, T.; Wang, B. K.; Xu, H. J.; Yan, X. B.; Tang, Y. CeOx-decorated hierarchical NiCo2S4 hollow nanotubes arrays for enhanced oxygen evolution reaction electrocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 39841–39847.

[77]

Wu, X. X.; Wei, J. X.; Zhang, T.; Yang, Y. C.; Liu, Q. Y.; Yan, X. B.; Tang, Y. Novel synthesis of in situ CeOx nanoparticles decorated on CoP nanosheets for highly efficient electrocatalytic oxygen evolution. Inorg. Chem. Front. 2021, 8, 4440–4447.

[78]

Zhang, T.; Wu, X. X.; Fan, Y. F.; Shan, C. F.; Wang, B. K.; Xu, H. J.; Tang, Y. Hollow CeOx/CoP heterostructures using twodimensional Co-MOF as template for efficient and stable electrocatalytic water splitting. ChemNanoMat 2020, 6, 1119–1126.

[79]

Xu, H. J.; Yang, Y. W.; Yang, X. X.; Cao, J.; Liu, W. S.; Tang, Y. Stringing MOF-derived nanocages: A strategy for the enhanced oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 8284–8291.

[80]

Zhang, Y.; Ye, F.; Li, W. D. Z. Self-assembled two-dimensional NiO/CeO2 heterostructure rich in oxygen vacancies as efficient bifunctional electrocatalyst for alkaline hydrogen evolution and oxygen evolution. Chem.—Eur. J. 2021, 27, 3766–3771.

[81]

Cao, X. Y.; Pu, T. C.; Lis, B. M.; Wachs, I. E.; Peng, C.; Zhu, M. H.; Hu, Y. K. Controlling the reconstruction of Ni/CeO2 catalyst during reduction for enhanced CO methanation. Engineering 2022, 14, 94–99.

[82]

Carter, J. H.; Liu, X.; He, Q.; Althahban, S.; Nowicka, E.; Freakley, S. J.; Niu, L. W.; Morgan, D. J.; Li, Y. W.; Niemantsverdriet, J. W. et al. Activation and deactivation of gold/ceria-zirconia in the low-temperature water–gas shift reaction. Angew. Chem., Int. Ed. 2017, 56, 16037–16041.

[83]

Yan, H.; Yang, C.; Shao, W.-P.; Cai, L.-H.; Wang, W.-W.; Jin, Z.; Jia, C.-J. Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nat. Commun. 2019, 10, 3470.

[84]

Liu, H. X.; Li, S. Q.; Wang, W. W.; Yu, W. Z.; Zhang, W. J.; Ma, C.; Jia, C. J. Partially sintered copper-ceria as excellent catalyst for the high-temperature reverse water gas shift reaction. Nat. Commun. 2022, 13, 867.

[85]

Pettinari, C.; Pettinari, R.; Di Nicola, C.; Tombesi, A.; Scuri, S.; Marchetti, F. Antimicrobial MOFs. Coord. Chem. Rev. 2021, 446, 214121.

[86]

Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214.

[87]

Perry IV, J. J.; Perman, J. A.; Zaworotko, M. J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 2009, 38, 1400–1417.

[88]

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

[89]

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

[90]

Rabani, I.; Karuppasamy, K.; Vikraman, D.; Ul Haq, Z.; Kim, H. S.; Seo, Y. S. Hierarchical structured nano-polyhedrons of CeO2@ZIF-8 composite for high performance supercapacitor applications. J. Alloys Compd. 2021, 875, 160074.

[91]

Kumaraguru, S.; Nivetha, R.; Gopinath, K.; Sundaravadivel, E.; Almutairi, B. O.; Almutairi, M. H.; Mahboob, S.; Kavipriya, M. R.; Nicoletti, M.; Govindarajan, M. Synthesis of Cu-MOF/CeO2 nanocomposite and their evaluation of hydrogen production and cytotoxic activity. J. Mater. Sci. Technol. 2022, 18, 1732–1745.

[92]

Huang, X. Y.; Yan, S. G.; Deng, D. Y.; Zhang, L. C.; Liu, R.; Lv, Y. Novel strategy for engineering the metal-oxide@MOF core@shell architecture and its applications in cataluminescence sensing. ACS Appl. Mater. Interfaces 2021, 13, 3471–3480.

[93]

Huo, Q.; Liu, G. Q.; Sun, H. H.; Fu, Y. F.; Ning, Y.; Zhang, B. Y.; Zhang, X. B.; Gao, J.; Miao, J. R.; Zhang, X. L. et al. CeO2-modified MIL-101(Fe) for photocatalysis extraction oxidation desulfurization of model oil under visible light irradiation. Chem. Eng. J. 2021, 422, 130036.

[94]

Hassanzadeh, J.; Al Lawati, H. A. J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184.

[95]

Bhattacharjee, A.; Purkait, M. K.; Sastri, C. V.; Gumma, S. CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorganica Chim. Acta 2022, 533, 120784.

[96]

Chen, F. Y.; Bian, K.; Li, H. S.; Tang, Y. B.; Hao, C. C.; Shi, W. L. A novel CeO2/MIL101(Fe) heterojunction for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. J. Chem. Technol. Biotechnol. 2022, 97, 1884–1892.

[97]

Humayun, M.; Shu, L.; Pi, W. B.; Xia, H.; Khan, A.; Zheng, Z. P.; Fu, Q. Y.; Tian, Y. H.; Luo, W. Vertically grown CeO2 and TiO2 nanoparticles over the MIL53Fe MOF as proper band alignments for efficient H2 generation and 2, 4-DCP degradation. Environ. Sci. Pollut. Res. 2022, 29, 34861–34873.

[98]

Wu, M. M.; Zhang, Y.; Zhang, R. Y.; Ma, J. W.; Alonso-Vante, N. Highly active oxygen evolution reaction electrocatalyst based on defective-CeO2−x decorated MOF(Ni/Fe). Electrochim. Acta 2022, 403, 139630.

[99]

Yang, L. Y.; Shan, X. C.; Zhao, Y. M.; Xiao, Z. Y.; An, Q. D.; Zhai, S. R. Efficient phosphate capture of Fe3O4/UiO-66-NH2/CeO2 in wide pH spectrum. Microporous Mesoporous Mater. 2022, 331, 111653.

[100]

Hassan, M. H.; Andreescu, D.; Andreescu, S. Cerium oxide nanoparticles stabilized within metal-organic frameworks for the degradation of nerve agents. ACS Appl. Nano Mater. 2020, 3, 3288–3294.

[101]

An, H. Y.; Hu, Y.; Song, N.; Mu, T. L.; Bai, S. Q.; Peng, Y.; Liu, L. L.; Tang, Y. Two-dimensional heterostructures built from ultrathin CeO2 nanosheet surface-coordinated and confined metal-organic frameworks with enhanced stability and catalytic performance. Chem. Sci. 2022, 13, 3035–3044.

[102]

Kang, L. Q.; Wang, B. L.; Güntner, A. T.; Xu, S. Y.; Wan, X. H.; Liu, Y. Y.; Marlow, S.; Ren, Y. F.; Gianolio, D.; Tang, C. C. et al. The electrophilicity of surface carbon species in the redox reactions of CuO-CeO2 catalysts. Angew. Chem., Int. Ed. 2021, 60, 14420–14428.

[103]

Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.

[104]

Carey, J. J.; Nolan, M. Dissociative adsorption of methane on the Cu and Zn doped (111) surface of CeO2. Appl. Catal. B. Environ. 2016, 197, 324–336.

[105]

Mo, L. Y.; Saw, E. T.; Kathiraser, Y.; Ang, M. L.; Kawi, S. Preparation of highly dispersed Cu/SiO2 doped with CeO2 and its application for high temperature water gas shift reaction. Int. J. Hydrogen Energy 2018, 43, 15891–15897.

[106]

Yuan, K.; Sun, X. C.; Yin, H. J.; Zhou, L.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Boosting the water gas shift reaction on Pt/CeO2-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying. J. Energy Chem. 2022, 67, 241–249.

[107]

Sivanantham, A.; Ganesan, P.; Vinu, A.; Shanmugam, S. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 2020, 10, 463–493.

[108]

Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125160.

[109]

Ma, G. Y.; Du, X. Q.; Zhang, X. S. Controlled phosphating: A novel strategy toward NiP3@CeO2 interface engineering for efficient oxygen evolution electrocatalysis. Dalton Trans. 2020, 49, 12581–12585.

[110]

Huang, J. Z.; Sheng, H. Y.; Ross, R. D.; Han, J. C.; Wang, X. J.; Song, B.; Jin, S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 2021, 12, 3036.

[111]

Zhang, Y. Y.; Liang, C.; Wu, J.; Liu, H.; Zhang, B.; Jiang, Z. X.; Li, S. W.; Xu, P. Recent advances in magnetic field-enhanced electrocatalysis. ACS Appl. Energy Mater. 2020, 3, 10303–10316.

[112]

Li, Y. Y.; Zhang, X. Y.; Zheng, Z. P. A review of transition metal oxygen-evolving catalysts decorated by cerium-based materials: Current status and future prospects. CCS Chem. 2022, 4, 31–53.

[113]

Yao, N.; Meng, R.; Wu, F.; Fan, Z. Y.; Cheng, G. Z.; Luo, W. Oxygen-vacancy-induced CeO2/Co4N heterostructures toward enhanced pH-universal hydrogen evolution reactions. Appl. Catal. B. Environ. 2020, 277, 119282.

[114]

Sun, H. M.; Tian, C. Y.; Fan, G. L.; Qi, J. N.; Liu, Z. T.; Yan, Z. H.; Cheng, F. Y.; Chen, J.; Li, C. P.; Du, M. Boosting activity on Co4N porous nanosheet by coupling CeO2 for efficient electrochemical overall water splitting at high current densities. Adv. Funct. Mater. 2020, 30, 1910596.

[115]

Pu, Y.; Luo, Y. D.; Wei, X. Q.; Sun, J. F.; Li, L. L.; Zou, W. X.; Dong, L. Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface lewis acid/base and oxygen defect. Appl. Catal. B. Environ. 2019, 254, 580–586.

[116]

Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J. Am. Chem. Soc. 2012, 134, 14526–14533.

[117]

Manwar, N. R.; Chilkalwar, A. A.; Nanda, K. K.; Chaudhary, Y. S.; Subrt, J.; Rayalu, S. S.; Labhsetwar, N. K. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible–NIR light irradiation. ACS Sustainable Chem. Eng. 2016, 4, 2323–2332.

[118]

Fu, W. Z.; Xu, X. W.; Wang, W. B.; Shen, J. F.; Ye, M. X. In-situ growth of NiFe2O4/2D MoS2 p–n heterojunction immobilizing palladium nanoparticles for enhanced visible-light photocatalytic activities. ACS Sustainable Chem. Eng. 2018, 6, 8935–8944.

[119]

Chae, B. W.; Amna, T.; Hassan, M. S.; Al-Deyab, S. S.; Khil, M. S. CeO2-Cu2O composite nanofibers: Synthesis, characterization photocatalytic and electrochemical application. Adv. Powder Technol. 2017, 28, 230–235.

[120]

Liotta, L. F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B. Environ. 2010, 100, 403–412.

[121]

Huang, D. H.; He, N.; Zhu, Q. H.; Chu, C. H.; Weon, S.; Rigby, K.; Zhou, X. C.; Xu, L.; Niu, J. F.; Stavitski, E. et al. Conflicting roles of coordination number on catalytic performance of single-atom Pt catalysts. ACS Catal. 2021, 11, 5586–5592.

[122]

Shan, W. P.; Liu, F. D.; Yu, Y. B.; He, H. The use of ceria for the selective catalytic reduction of NOx with NH3. Chin. J. Catal. 2014, 35, 1251–1259.

[123]

Yan, J. F.; Qiu, W. G.; Song, L. Y.; Chen, Y.; Su, Y. C.; Bai, G. M.; Zhang, G. Z.; He, H. Ligand-assisted mechanochemical synthesis of ceria-based catalysts for the selective catalytic reduction of NO by NH3. Chem. Commun. 2017, 53, 1321–1324.

[124]

Cheng, X. M.; Xiao, X. X.; Yin, Y.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Ammonia-free selective catalytic reduction of NO at low temperature on melamine impregnated MnOx-CeO2/carbon aerogels. Ind. Eng. Chem. Res. 2021, 60, 13233–13242.

[125]

Ciriminna, R.; Pandarus, V.; Béland, F.; Xu, Y. J.; Pagliaro, M. Heterogeneously catalyzed alcohol oxidation for the fine chemical industry. Org. Process Res. Dev. 2015, 19, 1554–1558.

[126]

Besson, M.; Gallezot, P. Selective oxidation of alcohols and aldehydes on metal catalysts. Catal. Today 2000, 57, 127–141.

[127]

Liu, J. J.; Wu, X. P.; Zou, S. H.; Dai, Y. H.; Xiao, L. P.; Gong, X. Q.; Fan, J. Origin of the high activity of mesoporous CeO2 supported monomeric VOx for low-temperature gas-phase selective oxidative dehydrogenation of benzyl alcohol: Role as an electronic “hole”. J. Phys. Chem. C 2014, 118, 24950–24958.

[128]

Mazumder, T.; Dandapat, S.; Baidya, T.; Likhar, P. R.; Clark, A. H.; Bera, P.; Tiwari, K.; Payra, S.; Srinivasa Rao, B.; Roy, S. et al. Dual-site cooperation for high benzyl alcohol oxidation activity of MnO2 in biphasic MnOx-CeO2 catalyst using aerial O2 in the vapor phase. J. Phys. Chem. C 2021, 125, 20831–20844.

[129]

Hao, J.; Long, Z. Y.; Sun, L. M.; Zhan, W. W.; Wang, X. J.; Han, X. G. Hierarchical CeO2@N-C ultrathin nanosheets for efficient selective oxidation of benzylic alcohols in water. Inorg. Chem. 2021, 60, 7732–7737.

[130]

Ma, D. H.; Lund, C. R. F. Assessing high-temperature water–gas shift membrane reactors. Ind. Eng. Chem. Res. 2003, 42, 711–717.

[131]

Miao, D. Y.; Goldbach, A.; Xu, H. Y. Platinum/apatite water–gas shift catalysts. ACS Catal. 2016, 6, 775–783.

[132]

Vovchok, D.; Guild, C. J.; Dissanayake, S.; Llorca, J.; Stavitski, E.; Liu, Z. Y.; Palomino, R. M.; Waluyo, I.; Li, Y. Y.; Frenkel, A. I. et al. In situ characterization of mesoporous Co/CeO2 catalysts for the high-temperature water–gas shift. J. Phys. Chem. C 2018, 122, 8998–9008.

[133]

Salaev, M. A.; Salaeva, A. A.; Kharlamova, T. S.; Mamontov, G. V. Pt-CeO2-based composites in environmental catalysis: A review. Appl. Catal. B. Environ. 2021, 295, 120286.

[134]

Lee, J.; Shin, D.; Lee, E.; Li, C. B.; Kim, J. M.; Han, J. W.; Kim, D. H. Alleviating inhibitory effect of H2 on low-temperature water-gas shift reaction activity of Pt/CeO2 catalyst by forming CeO2 nano-patches on Pt nano-particles. Appl. Catal. B. Environ. 2022, 305, 121038.

[135]

Reina, T. R.; Gonzalez-Castaño, M.; Lopez-Flores, V.; Martínez T, L. M.; Zitolo, A.; Ivanova, S.; Xu, W.; Centeno, M. A.; Rodriguez, J. A.; Odriozola, J. A. Au and Pt remain unoxidized on a CeO2-based catalyst during the water–gas shift reaction. J. Am. Chem. Soc. 2022, 144, 446–453.

[136]

Li, J. H.; Liu, Z. Q.; Cullen, D. A.; Hu, W. H.; Huang, J. E.; Yao, L. B.; Peng, Z. M.; Liao, P. L.; Wang, R. G. Distribution and valence state of ru species on CeO2 supports: Support shape effect and its influence on co oxidation. ACS Catal. 2019, 9, 11088–11103.

[137]

Corma, A.; Atienzar, P.; García, H.; Chane-Ching, J. Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004, 3, 394–397.

[138]

Singh, K. R. B.; Nayak, V.; Sarkar, T.; Singh, R. P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv. 2020, 10, 27194–27214.

[139]
Ali, A.; Garg, U.; Khan, K. U.; Azim, Y. Removal of organic and inorganic pollutants using CSFe3O4@CeO2 nanocatalyst via adsorption-reduction catalysis: A focused analysis on methylene blue. J. Polym. Environ., in press, https://doi.org/10.1007/s10924-022-02522-1.
[140]

Pan, C. R.; Bao, Y. Y.; Guo, A. Y.; Ma, J. Y. Environmentally relevant-level CeO2 NP with ferrous amendment alters soil bacterial community compositions and metabolite profiles in rice-planted soils. J. Agric. Food Chem. 2020, 68, 8172–8184.

Publication history
Copyright
Acknowledgements

Publication history

Received: 02 June 2022
Revised: 18 August 2022
Accepted: 20 August 2022
Published: 03 October 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22131007 and 21871127), the National Key R&D Program of China (No. 2021YFA1501101), Science and Technological Plan of Gansu Province (No. 20YF3GA012), and the 111 Project (No. B20027).

Return