Publications
Sort:
Research Article Issue
Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes
Nano Research 2020, 13 (9): 2413-2419
Published: 25 June 2020
Downloads:10

The immense potential of carbon nanoprobes (CNPs) for using as contrast agents has propelled much recent research and development in the field of thermoacoustic (TA) molecular imaging, while the proper engineering and design of such materials with required high TA conversion efficiency is still a highly challenging task. In this work, we proposed a controllable strategy to amplify the TA conversion efficiency of the CNPs by constructing vacancy defect (VD) dipoles, and systematically demonstrated the amplification mechanism through theoretical and experimental investigations. First-principles calculation results indicate that, when a carbon atom is removed from the CNPs by chemical approach, owing to local electron density redistribution, the VDs are formed at the positions of the original carbon atoms and act as the structural origin of permanent electric dipoles with the dipole moment several orders higher than that of non-defect sites. Under pulsed microwave irradiation, the VD dipoles are polarized repeatedly and significantly contribute to the conversion efficiency from absorbed electromagnetic waves to ultrasound through enhanced dielectric relaxation losses. We experimentally synthesized graphene samples with different VD densities and VD types to demonstrate the efficiency of the proposed strategy, and results coincide well with the theoretical proposition. This work offers feasible guidance to the systematic development and rational design of new high-conversion-efficiency TA CNPs via VD engineering.

Open Access Method Issue
Photoacoustic viscoelasticity imaging for the detection of acute hepatitis: a feasibility study
Biophysics Reports 2020, 6 (1): 1-8
Published: 13 March 2020
Downloads:13

Biomechanical assessments are essential for the understanding of physiological states and the characterization of certain tissue pathologies such as liver cirrhosis. In this work, we showed by the photoacoustic viscoelasticity (PAVE) imaging that obvious mechanical change was also observed in the development of the acute hepatitis owing to the hepatocyte enlargement and intracellular fluid increment, indicating that the PAVE technique can be developed as a supplementary method for detecting acute hepatitis in future. The feasibility of the PAVE imaging is validated by a group of agar phantoms. Furthermore, acute hepatitis pathological animal models were established and imaged ex vivo and in situ by the PAVE technique to demonstrate its capability for the mechanical characterization of acute hepatitis, and the imaging results were consistent with pathological results. The feasibility study of detecting acute hepatitis by the PAVE technique proved that this method has potential to be developed as a clinical biomechanical imaging method to supplement current clinical strategy for liver disease detection.

total 2