Journal Home > Volume 13 , Issue 9

The immense potential of carbon nanoprobes (CNPs) for using as contrast agents has propelled much recent research and development in the field of thermoacoustic (TA) molecular imaging, while the proper engineering and design of such materials with required high TA conversion efficiency is still a highly challenging task. In this work, we proposed a controllable strategy to amplify the TA conversion efficiency of the CNPs by constructing vacancy defect (VD) dipoles, and systematically demonstrated the amplification mechanism through theoretical and experimental investigations. First-principles calculation results indicate that, when a carbon atom is removed from the CNPs by chemical approach, owing to local electron density redistribution, the VDs are formed at the positions of the original carbon atoms and act as the structural origin of permanent electric dipoles with the dipole moment several orders higher than that of non-defect sites. Under pulsed microwave irradiation, the VD dipoles are polarized repeatedly and significantly contribute to the conversion efficiency from absorbed electromagnetic waves to ultrasound through enhanced dielectric relaxation losses. We experimentally synthesized graphene samples with different VD densities and VD types to demonstrate the efficiency of the proposed strategy, and results coincide well with the theoretical proposition. This work offers feasible guidance to the systematic development and rational design of new high-conversion-efficiency TA CNPs via VD engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vacancy-defect-dipole amplifies the thermoacoustic conversion efficiency of carbon nanoprobes

Show Author's information Wei Fang1,2Yujiao Shi1,2( )Da Xing1,2( )
MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
College of Biophotonics, South China Normal University, Guangzhou 510631, China

Abstract

The immense potential of carbon nanoprobes (CNPs) for using as contrast agents has propelled much recent research and development in the field of thermoacoustic (TA) molecular imaging, while the proper engineering and design of such materials with required high TA conversion efficiency is still a highly challenging task. In this work, we proposed a controllable strategy to amplify the TA conversion efficiency of the CNPs by constructing vacancy defect (VD) dipoles, and systematically demonstrated the amplification mechanism through theoretical and experimental investigations. First-principles calculation results indicate that, when a carbon atom is removed from the CNPs by chemical approach, owing to local electron density redistribution, the VDs are formed at the positions of the original carbon atoms and act as the structural origin of permanent electric dipoles with the dipole moment several orders higher than that of non-defect sites. Under pulsed microwave irradiation, the VD dipoles are polarized repeatedly and significantly contribute to the conversion efficiency from absorbed electromagnetic waves to ultrasound through enhanced dielectric relaxation losses. We experimentally synthesized graphene samples with different VD densities and VD types to demonstrate the efficiency of the proposed strategy, and results coincide well with the theoretical proposition. This work offers feasible guidance to the systematic development and rational design of new high-conversion-efficiency TA CNPs via VD engineering.

Keywords: thermoacoustic conversion efficiency, vacancy-defect, carbon nanoprobes

References(52)

[1]
Wang, X.; Bauer, D. R.; Witte, R.; Xin, H. Microwave-induced thermoacoustic imaging model for potential breast cancer detection. IEEE Trans. Biomed. Eng. 2012, 59, 2782-2791.
[2]
Huang, L.; Yao, L.; Liu, L. X.; Rong, J.; Jiang, H. B. Quantitative thermoacoustic tomography: Recovery of conductivity maps of heterogeneous media. Appl. Phys. Lett. 2012, 101, 244106.
[3]
Lou, C. G.; Yang, S. H.; Ji, Z.; Chen, Q.; Xing, D. Ultrashort microwave-induced thermoacoustic imaging: A breakthrough in excitation efficiency and spatial resolution. Phys. Rev. Lett. 2012, 109, 218101.
[4]
Gao, F.; Zheng, Y. J.; Wang, D. F. Microwave-acoustic phasoscopy for tissue characterization. Appl. Phys. Lett. 2012, 101, 043702.
[5]
Luo, W. L.; Ji, Z.; Yang, S. H.; Xing, D. Microwave-pumped electric-dipole resonance absorption for noninvasive functional imaging. Phys. Rev. Appl. 2018, 10, 024044.
[6]
Pramanik, M.; Ku, G.; Li, C. H.; Wang, L. V. Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (ta) and photoacoustic (pa) tomography. Med. Phys. 2008, 35, 2218-2223.
[7]
Zheng, Z.; Huang, L.; Jiang, H. B. Label-free thermoacoustic imaging of human blood vessels in vivo. Appl. Phys. Lett. 2018, 113, 253702.
[8]
Cao, C. J.; Nie, L. M.; Lou, C. G.; Xing, D. The feasibility of using microwave-induced thermoacoustic tomography for detection and evaluation of renal calculi. Phys. Med. Biol. 2010, 55, 5203-5212.
[9]
Wen, L. W.; Ding, W. Z.; Yang, S. H.; Xing, D. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials 2016, 75, 163-173.
[10]
Nie, L. M.; Xing, D.; Zhou, Q.; Yang, D. W.; Guo, H. Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging. Med. Phys. 2008, 35, 4026-4032.
[11]
Nie, L. M.; Xing, D.; Yang, S. H. In vivo detection and imaging of low-density foreign body with microwave-induced thermoacoustic tomography. Med. Phys. 2009, 36, 3429-3437.
[12]
Wang, X.; Qin, T.; Witte, R. S.; Xin, H. Computational feasibility study of contrast-enhanced thermoacoustic imaging for breast cancer detection using realistic numerical breast phantoms. IEEE Trans. Microw. Theory Tech. 2015, 63, 1489-1501.
[13]
Jin, X.; Wang, L. V. Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 2006, 51, 6437-6448.
[14]
Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C. B.; Lindstrom, M. J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T. M. et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 2007, 52, 6093-6115.
[15]
Nie, L. N.; Ou, Z. M.; Yang, S. H.; Xing, D. Thermoacoustic molecular tomography with magnetic nanoparticle contrast agents for targeted tumor detection. Med. Phys. 2010, 37, 4193-4200.
[16]
Pramanik, M.; Swierczewska, M.; Green, D.; Sitharaman, B.; Wang, L. V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 2009, 14, 034018.
[17]
Wu, D.; Huang, L.; Jiang, M.; Jiang, H. B. Contrast agents for photoacoustic and thermoacoustic imaging: A review. Int. J. Mol. Sci. 2014, 15, 23616-23639.
[18]
Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.
[19]
Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652-6660.
[20]
Lalwani, G.; Cai, X.; Nie, L. M.; Wang, L. V.; Sitharaman, B. Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. Photoacoustics 2013, 1, 62-67.
[21]
Wang, X.; Witte, R. S.; Xin, H. Thermoacoustic and photoacoustic characterizations of few-layer graphene by pulsed excitations. Appl. Phys. Lett. 2016, 108, 143104.
[22]
Gao, F.; Zheng, Y. J.; Feng, X. H.; Ohl, C. D. Thermoacoustic resonance effect and circuit modelling of biological tissue. Appl. Phys. Lett. 2013, 102, 063702.
[23]
Zhang, X. F.; Guo, J. J.; Guan, P. F.; Qin, G. W.; Pennycook, S. J. Gigahertz dielectric polarization of substitutional single niobium atoms in defective graphitic layers. Phys. Rev. Lett. 2015, 115, 147601.
[24]
Ku, G.; Wang, L. V. Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast. Med. Phys. 2001, 28, 4-10.
[25]
Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734-15740.
[26]
Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; He, X. W.; Su, K. H.; Zhang, Q. Y. Application of yolk-shell Fe3O4@ N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 2018, 11, 1500-1519.
[27]
Kuang, B. Y.; Song, W. L.; Ning, M. Q.; Li, J. B.; Zhao, Z. J.; Guo, D. Y.; Cao, M. S.; Jin, H. B. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 2018, 127, 209-217.
[28]
Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557-3561.
[29]
Kumar, S.; Parekh, S. H. Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate. Commun. Chem. 2020, 3, 8.
[30]
Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[31]
Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213-2218.
[32]
Chen, C. Y.; Chen, Y. C.; Hong, Y. T.; Lee, T. W.; Huang, J. F. Facile fabrication of ascorbic acid reduced graphene oxide-modified electrodes toward electroanalytical determination of sulfamethoxazole in aqueous environments. Chem. Eng. J. 2018, 352, 188-197.
[33]
Li, Y. P.; Tan, Q. H.; Qin, H.; Xing, D. Defect-rich single-layer MoS2 nanosheets with high dielectric-loss for contrast-enhanced thermoacoustic imaging of breast tumor. Appl. Phys. Lett. 2019, 115, 073701.
[34]
Coelho, R. Physics of Dielectrics for the Engineer; Elsevier: New York, 2012.
[35]
Metaxas, A. C.; Meredith, R. J. Industrial Microwave Heating; Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers: London, 1983.
[36]
Meng, B. S.; Klein, B. D. B.; Booske, J. H.; Cooper, R. F. Microwave absorption in insulating dielectric ionic crystals including the role of point defects. Phys. Rev. B 1996, 53, 12777-12785.
[37]
Gholizadeh, R.; Yu, Y. X. Work functions of pristine and heteroatom-doped graphenes under different external electric fields: An ab initio dft study. J. Phys. Chem. C 2014, 118, 28274-28282.
[38]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[39]
Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581-587.
[40]
Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466-4474.
[41]
Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754-5761.
[42]
Cançado, L. G.; Jorio, A.; Ferreira, E. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. D. O.; Lombardo, A.; Kulmala, T.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190-3196.
[43]
Ammar, M. R.; Galy, N.; Rouzaud, J. N.; Toulhoat, N.; Vaudey, C. E.; Simon, P.; Moncoffre, N. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon 2015, 95, 364-373.
[44]
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235-246.
[45]
Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36-41.
[46]
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925-3930.
[47]
Centi, G.; Barbera, K.; Perathoner, S.; Gupta, N. K.; Ember, E. E.; Lercher, J. A. Onion-like graphene carbon nanospheres as stable catalysts for carbon monoxide and methane chlorination. ChemCatChem 2015, 7, 3036-3046.
[48]
Kennedy, T.; Wilsey, N. D. Identification of the isolated Ga vacancy in electron-irradiated GaP through EPR. Phys. Rev. Lett. 1978, 41, 977-980.
[49]
Castner, T. G.; Känzig, W. The electronic structure of V-centers. J. Phys. Chem. Solids 1957, 3, 178-195.
[50]
Wei, H. J.; Yin, X. W.; Li, X.; Li, M. H.; Dang, X. L.; Zhang, L. T.; Cheng, L. F. Controllable synthesis of defective carbon nanotubes/Sc2Si2O7 ceramic with adjustable dielectric properties for broadband high-performance microwave absorption. Carbon 2019, 147, 276-283.
[51]
Hahn, B.; Weissmann, R.; Greil, P. Electron paramagnetic resonance investigation of carbon distribution in SiOC glasses. J. Mater. Sci. Lett. 1996, 15, 1243-1244.
[52]
Xu, H. L.; Yin, X. W.; Zhu, M.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 6332-6341.
File
12274_2020_2867_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2019
Revised: 05 April 2020
Accepted: 10 May 2020
Published: 25 June 2020
Issue date: September 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Nos. 61331001, 61627827, 61805085 and 91539127), the Science and Technology Planning Project of Guangdong Province, China (Nos. 2015B020233016, 2014B020215003, 2014A020215031, 2014B050504009 and 2018A030310519), the Guangzhou Science and technology plan project (No. 201904010321), the Distinguished Young Teacher Project in Higher Education of Guangdong, China (No. YQ2015049), and the Science and Technology Program of Guangzhou (No. 2019050001).

Return