Sort:
Regular Paper Issue
BADF: Bounding Volume Hierarchies Centric Adaptive Distance Field Computation for Deformable Objects on GPUs
Journal of Computer Science and Technology 2022, 37 (3): 731-740
Published: 31 May 2022

We present a novel algorithm BADF (Bounding Volume Hierarchy Based Adaptive Distance Fields) for accelerating the construction of ADFs (adaptive distance fields) of rigid and deformable models on graphics processing units. Our approach is based on constructing a bounding volume hierarchy (BVH) and we use that hierarchy to generate an octree-based ADF. We exploit the coherence between successive frames and sort the grid points of the octree to accelerate the computation. Our approach is applicable to rigid and deformable models. Our GPU-based (graphics processing unit based) algorithm is about 20x–50x faster than current mainstream central processing unit based algorithms. Our BADF algorithm can construct the distance fields for deformable models with 60k triangles at interactive rates on an NVIDIA GTX GeForce 1060. Moreover, we observe 3x speedup over prior GPU-based ADF algorithms.

Open Access Research Article Issue
Editing smoke animation using a deforming grid
Computational Visual Media 2017, 3 (4): 369-378
Published: 24 October 2017
Downloads:14

We present a new method for editing smoke animations by directly deforming the grid used for simulation. We present a modification to the widely used semi-Lagrangian advection operator and use it to transfer the deformation from the grid to the smoke body. Our modified operator bends the smoke particle streamlines according to the deformation gradient. We demonstrate that the controlled smoke animation preserves the fine-grained vortical velocity components and incompressibility constraints, while conforming to the deformed grid. Moreover, our approach enables interactive 3D smoke animation editing by using a reduced-dimensional subspace. Overall, our method makes it possible to use current mesh editing tools to control the smoke body.

total 2