Journal Home > Volume 15 , Issue 6

We computationally investigate the impact of crystal strain on the formation of native point defects likely to be formed in halide perovskites; A-site cation antisite (IA), Pb antisite (IPb), A-site cation vacany (VA), I vacancy (VI), Pb vacancy (VPb), and I interstitial (Ii). We systematically identify compressive and tensile strain to CsPbI3, FAPbI3, and MAPbI3 perovskite structures. We observe that while each type of defect has a unique behaviour, overall, the defect formation in FAPbI3 is much more sensitive to the strain. The compressive strain can enhance the formation energy of neutral IPb and Ii up to 15% for FAPbI3, depending on the growth conditions. We show that the strain not only controls the formation of defects but also their transition levels in the band gap: A deep level can be transformed into a shallow level by the strain. We anticipate that tailoring the lattice strain can be used as a defect passivation mechanism for future studies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Lattice strain suppresses point defect formation in halide perovskites

Show Author's information Caner Deger1,2Shaun Tan3K. N. Houk1( )Yang Yang3( )Ilhan Yavuz2( )
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
Department of Physics, Marmara University, Ziverbey, Istanbul 34722, Turkey
Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, USA

Abstract

We computationally investigate the impact of crystal strain on the formation of native point defects likely to be formed in halide perovskites; A-site cation antisite (IA), Pb antisite (IPb), A-site cation vacany (VA), I vacancy (VI), Pb vacancy (VPb), and I interstitial (Ii). We systematically identify compressive and tensile strain to CsPbI3, FAPbI3, and MAPbI3 perovskite structures. We observe that while each type of defect has a unique behaviour, overall, the defect formation in FAPbI3 is much more sensitive to the strain. The compressive strain can enhance the formation energy of neutral IPb and Ii up to 15% for FAPbI3, depending on the growth conditions. We show that the strain not only controls the formation of defects but also their transition levels in the band gap: A deep level can be transformed into a shallow level by the strain. We anticipate that tailoring the lattice strain can be used as a defect passivation mechanism for future studies.

Keywords: perovskite solar cells, lattice strain, halide perovskites, defect formation

References(58)

1

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, B.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

2

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

3

Snaith, H. J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376.

4

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

5

Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513.

6
Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Apr 4, 2021).
7

Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

8

Ran, C. X.; Xu, J. T.; Gao, W. Y.; Huang, C. M.; Dou, S. X. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610.

9

Li, X.; Bi, D. Q.; Yi, C. Y.; Décoppet, J. D.; Luo, J. S.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62.

10

He, M.; Li, B.; Cui, X.; Jiang, B. B.; He, Y. J.; Chen, Y. H.; O’Neil, D.; Szymanski, P.; EI-Sayed, M. A.; Huang, J. S. et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat. Commun. 2017, 8, 16045.

11

Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M. J.; Berry, J. J.; Van Hest, M. F. A. M.; Zhu, K. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3, 18017.

12

Ball, J. M.; Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149.

13

Tan, S. Yavuz, I.; Weber, M. H.; Huang, T. Y.; Chen, C. H.; Wang, R.; Wang, H. C.; Ko, J. H.; Nuryyeva, S.; Xue, J. J. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 2020, 4, 2426–2442.

14

Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

15

Zheng, X. P.; Chen, B.; Dai, J.; Fang, Y. J.; Bai, Y.; Lin, Y. Z.; Wei, H. T.; Zeng, X. C.; Huang, J. S. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2017, 2, 17102.

16

Akin, S.; Arora, N.; Zakeeruddin, S. M.; Grätzel, M.; Friend, R. H.; Dar, M. I. New strategies for defect passivation in high-efficiency perovskite solar cells. Adv. Energy Mater. 2020, 10, 1903090.

17

Song, L.; Guo, X. Y.; Hu, Y. S.; Lv, Y.; Lin, J.; Liu, Z. Q.; Fan, Y.; Liu, X. Y. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J. Phys. Chem. Lett. 2017, 8, 4148–4154.

18

Wang, N. N.; Cheng, L.; Ge, R.; Zhang, S. T.; Miao, Y. F.; Zou, W.; Yi, C.; Sun, Y.; Cao, Y.; Yang, R. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 2016, 10, 699–704.

19

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

20

Lee, S. Kim, D. B.; Yu, J. C.; Jang, C. H.; Park, J. H.; Lee, B. R.; Song, M. H. Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Adv. Mater. 2019, 31, 1805244.

21

Wang, N. N.; Cheng, L.; Si, J. J.; Liang, X. Y.; Jin, Y. Z.; Wang, J. P.; Huang, W. Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Appl. Phys. Lett. 2016, 108, 141102.

22

Zou, Y. T.; Ban, M. Y.; Yang, Y. G.; Bai, S.; Wu, C.; Han, Y. J.; Wu, T.; Tan, Y. S.; Huang, Q.; Gao, X. Y. et al. Boosting perovskite light-emitting diode performance via tailoring interfacial contact. ACS Appl. Mater. Interfaces 2018, 10, 24320–24326.

23

DeQuilettes, D. W.; Koch, S.; Burke, S.; Paranji, R. K.; Shropshire, A. J.; Ziffer, M. E.; Ginger, D. S. Photoluminescence lifetimes exceeding 8 µs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation. ACS Energy Lett. 2016, 1, 438–444.

24

Lee, S.; Park, J. H.; Lee, B. R.; Jung, E. D.; Yu, J. C.; Di Nuzzo, D.; Friend, R. H.; Song, M. H. Amine-based passivating materials for enhanced optical properties and performance of organic-inorganic perovskites in light-emitting diodes. J. Phys. Chem. Lett. 2017, 8, 1784–1792.

25

Yang, X. L.; Zhang, X. W.; Deng, J. X.; Chu, Z. M.; Jiang, Q.; Meng, J. H.; Wang, P. Y.; Zhang, L. Q.; Yin, Z. G.; You, J. B. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

26

Jamaludin, N. F.; Yantara, N.; Ng, Y. F.; Li, M. J.; Goh, T. W.; Thirumal, K.; Sum, T. C.; Mathews, N.; Soci, C.; Mhaisalkar, S. Grain size modulation and interfacial engineering of CH3NH3PbBr3 emitter films through incorporation of tetraethylammonium bromide. ChemPhysChem 2018, 19, 1075–1080.

27

Jones, T. W.; Osherov, A.; Alsari, M.; Sponseller, M.; Duck, B. C.; Jung, Y. K.; Settens, C.; Niroui, F.; Brenes, R.; Stan, C. V. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 2019, 12, 596–606.

28

Zhu, C.; Niu, X. X.; Fu, Y. H.; Li, N. X.; Hu, C.; Chen, Y. H.; He, X.; Na, G. R.; Liu, P. F.; Zai, H. C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 2019, 10, 815.

29

Moloney, E. G.; Yeddu, V.; Saidaminov, M. I. Strain engineering in halide perovskites. ACS Mater. Lett. 2020, 2, 1495–1508.

30

Wang, J. T. W.; Wang, Z. P.; Zhang, W.; deQuilettes, D. W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P. K.; Patel, J. B.; Yusof, H. A. M.; Vaynzof, Y. et al. Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 2016, 9, 2892–2901.

31

Wu, C.; Chen, K.; Guo, D. Y.; Wang, S. L.; Li, P. G. Cations substitution tuning phase stability in hybrid perovskite single crystals by strain relaxation. RSC Adv. 2018, 8, 2900–2905.

32

Tan, S.; Yavuz, I.; De Marco, N.; Huang, T.; Lee, S. J.; Choi, C. S.; Wang, M. H.; Nuryyeva, S.; Wang, R.; Zhao, Y. P. et al. Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 2020, 32, 1906995.

33

Saidaminov, M. I.; Kim, J.; Jain, A.; Quintero-Bermudez, R.; Tan, H. R.; Long, G. K.; Tan, F. R.; Johnston, A.; Zhao, Y. C.; Voznyy, O. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 2018, 3, 648–654.

34

Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

35

Wang, H.; Zhu, C.; Liu, L.; Ma, S.; Liu, P. F.; Wu, J. F.; Shi, C. B.; Du, Q.; Hao, Y. M.; Xiang, S. S. et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv. Mater. 2019, 31, 1904408.

36

Steele, J. A.; Jin, H. D.; Dovgaliuk, I.; Berger, R. F.; Braeckevelt, T.; Yuan, H. F.; Martin, C.; Solano, E.; Lejaeghere, K.; Rogge, S. M. J. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 2019, 365, 679–684.

37

Chen, Y. M.; Lei, Y. S.; Li, Y. H.; Yu, Y. G.; Cai, J. Z.; Chiu, M. H.; Rao, R.; Gu, Y.; Wang, C. F.; Choi, W. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 2020, 577, 209–215.

38

Zhou, Q.; Jin, Z. W.; Li, H.; Wang, J. Z. Enhancing performance and uniformity of CH3NH3PbI3−xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Sci. Rep. 2016, 6, 21257.

39

Rolston, N.; Bush, K. A.; Printz, A. D.; Gold-Parker, A.; Ding, Y. C.; Toney, M. F.; Mcgehee, M. D.; Dauskardt, R. H. Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 2018, 8, 1802139.

40

Zhao, J. J.; Deng, Y. H.; Wei, H. T.; Zheng, X. P.; Yu, Z. H.; Shao, Y. C.; Shield, J. E.; Huang, J. S. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.

41

Wang, C.; Ma, L.; Guo, D. Q.; Zhao, X.; Zhou, Z. L.; Lin, D. B.; Zhang, F. T.; Zhao, W. R.; Zhang, J. H.; Nie, Z. G. Balanced strain-dependent carrier dynamics in flexible organic-inorganic hybrid perovskites. J. Mater. Chem. C 2020, 8, 3374–3379.

42

Liu, D. T.; Luo, D. Y.; Iqbal, A. N.; Orr, K. W. P.; Doherty, T. A. S.; Lu, Z. H.; Stranks, S. D.; Zhang, W. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 2021, 20, 1337–1346.

43

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

44

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

45

Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

46

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

47

Komsa, H. P.; Broqvist, P.; Pasquarello, A. Alignment of defect levels and band edges through hybrid functionals: Effect of screening in the exchange term. Phys. Rev. B 2010, 81, 205118.

48

Freysoldt, C.; Lange, B.; Neugebauer, J.; Yan, Q. M.; Lyons, J. L.; Janotti, A.; Van De Walle, C. G. Electron and chemical reservoir corrections for point-defect formation energies. Phys. Rev. B 2016, 93, 165206.

49

Deger, C. Strain-enhanced dzyaloshinskii-moriya interaction at Co/Pt interfaces. Sci. Rep. 2020, 10, 12314.

50

Aksu, P.; Deger, C.; Yavuz, I.; Yildiz, F. Strain-promoted perpendicular magnetic anisotropy in Co-Rh alloys. Appl. Phys. Lett. 2020, 116, 212402.

51

Kieslich, G.; Sun, S. J.; Cheetham, A. K. An extended tolerance factor approach for organic-inorganic perovskites. Chem. Sci. 2015, 6, 3430–3433.

52

Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556.

53

Han, G. F.; Hadi, H. D.; Bruno, A.; Kulkarni, S. A.; Koh, T. M.; Wong, L. H.; Soci, C.; Mathews, N.; Zhang, S.; Mhaisalkar, S. G. Additive selection strategy for high performance perovskite photovoltaics. J. Phys. Chem. C 2018, 122, 13884–13893.

54

Fu, Y. P.; Hautzinger, M. P.; Luo, Z. Y.; Wang, F. F.; Pan, D. X.; Aristov, M. M.; Guzei, I. A.; Pan, A. L.; Zhu, X. Y.; Jin, S. Incorporating large a cations into lead iodide perovskite cages: Relaxed goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS Cent. Sci. 2019, 5, 1377–1386.

55

Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

56

Liu, N.; Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 2018, 20, 6800–6804.

57

Ghosh, D.; Aziz, A.; Dawson, J. A.; Walker, A. B.; Islam, M. S. Putting the squeeze on lead iodide perovskites: Pressure-induced effects to tune their structural and optoelectronic behavior. Chem. Mater. 2019, 31, 4063–4071.

58

Qiao, L.; Fang, W. H.; Long, R.; Prezhdo, O. V. Elimination of charge recombination centers in metal halide perovskites by strain. J. Am. Chem. Soc. 2021, 143, 9982–9990.

File
12274_2022_4141_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 September 2021
Revised: 04 January 2022
Accepted: 04 January 2022
Published: 28 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources) and Hoffman2 cluster at the University of California, Los Angeles. Computational analysis was performed at the Simulations and Modelling Research Lab (Simulab), Physics Department of MU. C. D. would like to thank the Fulbright Turkey Commission for providing a valuable scholarship for his post-doctoral study at the United States. K. N. H. was supported by the National Science Foundation (CHE-1764328). S. T. and Y. Y. were supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office under award DE-EE0008751.

Return