Sort:
Research Article Issue
Lattice strain suppresses point defect formation in halide perovskites
Nano Research 2022, 15 (6): 5746-5751
Published: 28 March 2022
Downloads:62

We computationally investigate the impact of crystal strain on the formation of native point defects likely to be formed in halide perovskites; A-site cation antisite (IA), Pb antisite (IPb), A-site cation vacany (VA), I vacancy (VI), Pb vacancy (VPb), and I interstitial (Ii). We systematically identify compressive and tensile strain to CsPbI3, FAPbI3, and MAPbI3 perovskite structures. We observe that while each type of defect has a unique behaviour, overall, the defect formation in FAPbI3 is much more sensitive to the strain. The compressive strain can enhance the formation energy of neutral IPb and Ii up to 15% for FAPbI3, depending on the growth conditions. We show that the strain not only controls the formation of defects but also their transition levels in the band gap: A deep level can be transformed into a shallow level by the strain. We anticipate that tailoring the lattice strain can be used as a defect passivation mechanism for future studies.

Research Article Issue
Silver nanowires with semiconducting ligands for low-temperature transparent conductors
Nano Research 2016, 9 (2): 392-400
Published: 07 January 2016
Downloads:20

Metal nanowire networks represent a promising candidate for the rapid fabrication of transparent electrodes with high transmission and low sheet-resistance values at very low deposition temperatures. A commonly encountered challenge in the formation of conductive nanowire electrodes is establishing high-quality electronic contact between nanowires to facilitate long-range current transport through the network. A new system involving nanowire ligand removal and replacement with a semiconducting sol-gel tin oxide matrix has enabled the fabrication of high-performance transparent electrodes at dramatically reduced temperatures with minimal need for post-deposition treatment.

Research Article Issue
Solution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices
Nano Research 2012, 5 (11): 805-814
Published: 22 October 2012
Downloads:40

Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demonstrate the efficacy of low temperature solution-processed flexible metal nanowire networks embedded in a conductive metal oxide nanoparticle matrix as transparent conductors, and investigate their microstructural, optoelectronic, and mechanical properties in attempting to resolve nearly all of the technological issues imposed on silver nanowire networks. Surrounding silver nanowires by conductive indium tin oxide nanoparticles offers low wire to wire junction resistance, smooth surface morphology, and excellent mechanical adhesion and flexibility while maintaining the high transmittance and the low sheet resistance. In addition, we discuss the relationship between sheet resistance and transmittance in the silver nanowire composite transparent conductors and their maximum achievable transmittance. Although we have selected silver nanowires and indium tin oxide nanoparticle matrix as demonstration materials, we anticipate that various metal nanowire meshes embedded in various conductive metal oxide nanoparticle matrices can effectively serve as transparent conductors for a wide variety of optoelectronic devices owing to their superior performance, simple, cost-effective, and gentle processing.

total 3