Sort:
Research Article Online first
Sensitive humidity sensor based on moisture-driven energy generation
Nano Research
Published: 07 March 2024
Downloads:66

The emergence of novel self-powered humidity sensors has attracted considerable attention in the fields of smart electronic devices and personal healthcare. Herein, self-powered humidity sensors have been fabricated using a moisture-driven energy generation (MEG) device based on asymmetric tubular graphitic carbon nitride (g-CN) films prepared on anodized aluminum (AAO) template. At a relative humidity (RH) of 96%, the MEG device can provide an open-circuit voltage of 0.47 V and a short-circuit current of 3.51 μA, with a maximum output power of 0.08 μW. With inherent self-powered ability and humidity response via current variation, an extraordinary response of 1.78 × 106% (41%–96% RH) can be gained from the MEG device. The possible power generation mechanism is that g-CN/AAO heterostructure can form ion gradient and diffusion under the action of moisture to convert chemical potential into electrical potential, evoking a connaturally sensitive response to humidity. Self-powered respiration monitoring device based on the sensor is designed to monitor human movement (sitting, warming up, and running) and sleep status (normal, snoring, and apnea), maintaining excellent stability during cumulative 12-h respiration monitoring. This self-powered humidity sensing technology has promising potential for extensive integration into smart electronic and round-the-clock health monitoring devices.

Research Article Online first
Rational design multi-color-emissive chemiluminescent carbon nanodots in a single solvothermal reaction
Nano Research
Published: 30 January 2024
Downloads:56

Recently, the chemiluminescence (CL) induced by carbon nanodots (CDs) has intrigued researchers’ extensive interests in various applications due to its special light emission principle. However, the difficulty of synthesizing chemiluminescent CDs with full-spectrum emission severely hinders the further regulation of the CL emission mechanism. Herein, the multi-color-emissive chemiluminescent CDs are rational designed and further synthesized by regulating the sp2-hybrid core and sp3-hybrid surface from the citrate-ammonia molecular in a single solvothermal reaction. More experimental characterizations and density functional theory calculations reveal that the higher temperature can promote the crosslinking polymerization/carbonization of carbon core and the higher protonation of solvent can determine the core size of final CDs, resulting in the variant CL emission from molecular-, crosslinking- and core-states. Thus, the CL emission of the CDs can be further synthesized by tuning the luminescence chromophores in the formation process via regulating the temperature and solvent, enabling the applications of the CL CDs in illumination and information encryption. This study paves a new technology to understand the luminescence of CDs and affords an industry translational potential over traditional chemiluminescent molecular.

total 2