Journal Home > Online First

Recently, the chemiluminescence (CL) induced by carbon nanodots (CDs) has intrigued researchers’ extensive interests in various applications due to its special light emission principle. However, the difficulty of synthesizing chemiluminescent CDs with full-spectrum emission severely hinders the further regulation of the CL emission mechanism. Herein, the multi-color-emissive chemiluminescent CDs are rational designed and further synthesized by regulating the sp2-hybrid core and sp3-hybrid surface from the citrate-ammonia molecular in a single solvothermal reaction. More experimental characterizations and density functional theory calculations reveal that the higher temperature can promote the crosslinking polymerization/carbonization of carbon core and the higher protonation of solvent can determine the core size of final CDs, resulting in the variant CL emission from molecular-, crosslinking- and core-states. Thus, the CL emission of the CDs can be further synthesized by tuning the luminescence chromophores in the formation process via regulating the temperature and solvent, enabling the applications of the CL CDs in illumination and information encryption. This study paves a new technology to understand the luminescence of CDs and affords an industry translational potential over traditional chemiluminescent molecular.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational design multi-color-emissive chemiluminescent carbon nanodots in a single solvothermal reaction

Show Author's information Guang-Song ZhengCheng-Long Shen( )Yuan DengKai-Kai LiuJin-Hao ZangLin DongQing Lou( )Chong-Xin Shan( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China

Abstract

Recently, the chemiluminescence (CL) induced by carbon nanodots (CDs) has intrigued researchers’ extensive interests in various applications due to its special light emission principle. However, the difficulty of synthesizing chemiluminescent CDs with full-spectrum emission severely hinders the further regulation of the CL emission mechanism. Herein, the multi-color-emissive chemiluminescent CDs are rational designed and further synthesized by regulating the sp2-hybrid core and sp3-hybrid surface from the citrate-ammonia molecular in a single solvothermal reaction. More experimental characterizations and density functional theory calculations reveal that the higher temperature can promote the crosslinking polymerization/carbonization of carbon core and the higher protonation of solvent can determine the core size of final CDs, resulting in the variant CL emission from molecular-, crosslinking- and core-states. Thus, the CL emission of the CDs can be further synthesized by tuning the luminescence chromophores in the formation process via regulating the temperature and solvent, enabling the applications of the CL CDs in illumination and information encryption. This study paves a new technology to understand the luminescence of CDs and affords an industry translational potential over traditional chemiluminescent molecular.

Keywords: carbon nanodots, mechanism, chemiluminescence, regulation, energy level alignment

References(42)

[1]

Lou, Q.; Ni, Q. C.; Niu, C. Y.; Wei, J. Y.; Zhang, Z. F.; Shen, W. X.; Shen, C. L.; Qin, C. C.; Zheng, G. S.; Liu, K. K. et al. Carbon nanodots with nearly unity fluorescent efficiency realized via localized excitons. Adv. Sci. 2022, 9, 2203622.

[2]

Wang, B. Y.; Lu, S. Y. The light of carbon dots: From mechanism to applications. Matter 2022, 5, 110–149.

[3]

Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

[4]

Shi, Y. X.; Su, W.; Yuan, F. L.; Yuan, T.; Song, X. Z.; Han, Y. Y.; Wei, S. Y.; Zhang, Y.; Li, Y. C.; Li, X. H. et al. Carbon dots for electroluminescent light-emitting diodes: Recent progress and future prospects. Adv. Mater. 2023, 35, 2210699.

[5]

Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586.

[6]

Shen, C. L.; Lou, Q.; Zang, J. H.; Liu, K. K.; Qu, S. N.; Dong, L.; Shan, C. X. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 2020, 7, 1903525.

[7]

Lou, Q.; Chen, N.; Zhu, J. Y.; Liu, K. K.; Li, C.; Zhu, Y. S.; Xu, W.; Chen, X.; Song, Z. J.; Liang, C. H. et al. Thermally enhanced and long lifetime red TADF carbon dots via multi-confinement and phosphorescence assisted energy transfer. Adv. Mater. 2023, 35, 2211858.

[8]

Vallan, L.; Urriolabeitia, E. P.; Ruipérez, F.; Matxain, J. M.; Canton-Vitoria, R.; Tagmatarchis, N.; Benito, A. M.; Maser, W. K. Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. J. Am. Chem. Soc. 2018, 140, 12862–12869.

[9]

Yuan, F. L.; Yuan, T.; Sui, L.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

[10]

Xue, S. S.; Li, P. F.; Sun, L.; An, L.; Qu, D.; Wang, X. Y.; Sun, Z. C. The formation process and mechanism of carbon dots prepared from aromatic compounds as precursors: A review. Small 2023, 19, 2206180.

[11]

Bartolomei, B.; Bogo, A.; Amato, F.; Ragazzon, G.; Prato, M. Nuclear magnetic resonance reveals molecular species in carbon nanodot samples disclosing flaws. Angew. Chem., Int. Ed. 2022, 61, e202200038.

[12]

Huang, C. S.; Feng, M. R.; Zhu, X. E.; Zhou, Q. Y.; Zeng, S. S.; Huang, Y. F.; Zhang, H. F. Polymer precursor strategy toward the precise synthesis of uniform hairy carbon dots with tunable sizes and size effects over their fluorescence. Macromolecules 2021, 54, 11497–11507.

[13]

Chen, Y. L.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 2012, 4, 559–562.

[14]

Yang, M. W.; Huang, J. G.; Fan, J. L.; Du, J. J.; Pu, K. Y.; Peng, X. J. Chemiluminescence for bioimaging and therapeutics: Recent advances and challenges. Chem. Soc. Rev. 2020, 49, 6800–6815.

[15]

Kagalwala, H. N.; Gerberich, J.; Smith, C. J.; Mason, R. P.; Lippert, A. R. Chemiluminescent 1,2-dioxetane iridium complexes for near-infrared oxygen sensing. Angew. Chem., Int. Ed. 2022, 61, e202115704.

[16]

Shen, C. L.; Jiang, T. C.; Lou, Q.; Zhao, W. B.; Lv, C. F.; Zheng, G. S.; Liu, H. R.; Li, P. F.; Dai, L. L.; Liu, K. K. et al. Near-infrared chemiluminescent carbon nanogels for oncology imaging and therapy. SmartMat 2022, 3, 269–285.

[17]

Yang, J.; Yin, W.; Van, R.; Yin, K. Y.; Wang, P.; Zheng, C.; Zhu, B. Y.; Ran, K.; Zhang, C.; Kumar, M. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 2020, 11, 4052.

[18]

Lyu, Y.; Pu, K. Y. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. 2017, 4, 1600481.

[19]

Ouyang, Y.; Zhang, P.; Manis-Levy, H.; Paltiel, Y.; Willner, I. Transient dissipative optical properties of aggregated Au nanoparticles, CdSe/ZnS quantum dots, and supramolecular nucleic acid-stabilized Ag nanoclusters. J. Am. Chem. Soc. 2021, 143, 17622–17632.

[20]

Dong, S. Q.; Yuan, Z. Q.; Zhang, L. J.; Lin, Y. J.; Lu, C. Rapid screening of oxygen states in carbon quantum dots by chemiluminescence probe. Anal. Chem. 2017, 89, 12520–12526.

[21]

Zhen, X.; Zhang, C. W.; Xie, C.; Miao, Q. Q.; Lim, K. L.; Pu, K. Y. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 2016, 10, 6400–6409.

[22]

Augusto, F. A.; de Souza, G. A.; de Souza Júnior, S. P.; Khalid, M.; Baader, W. J. Efficiency of electron transfer initiated chemiluminescence. Photochem. Photobiol. 2013, 89, 1299–1317.

[23]

Shen, C. L.; Lou, Q.; Lv, C. F.; Zang, J. H.; Qu, S. N.; Dong, L.; Shan, C. X. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption. Adv. Sci. 2019, 6, 1802331.

[24]

Zheng, G. S.; Shen, C. L.; Lou, Q.; Han, J. F.; Ding, Z. Z.; Deng, Y.; Wu, M. Y.; Liu, K. K.; Zang, J. H.; Dong, L. et al. Meter-scale chemiluminescent carbon nanodot films for temperature imaging. Mater. Horiz. 2022, 9, 2533–2541.

[25]

Shen, C. L.; Zheng, G. S.; Wu, M. Y.; Wei, J. Y.; Lou, Q.; Ye, Y. L.; Liu, Z. Y.; Zang, J. H.; Dong, L.; Shan, C. X. Chemiluminescent carbon nanodots as sensors for hydrogen peroxide and glucose. Nanophotonics 2020, 9, 3597–3604.

[26]

Shen, C. L.; Lou, Q.; Lv, C. F.; Zheng, G. S.; Zang, J. H.; Jiang, T. C.; Cheng, Z.; Liu, K. K.; Niu, C. Y.; Dong, L. et al. Trigonal nitrogen activates high-brightness chemiluminescent carbon nanodots. ACS Mater. Lett. 2021, 3, 826–837.

[27]

Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Evolution and synthesis of carbon dots: From carbon dots to carbonized polymer dots. Adv. Sci. 2019, 6, 1901316.

[28]

Rigodanza, F.; Burian, M.; Arcudi, F.; Đorđević, L.; Amenitsch, H.; Prato, M. Snapshots into carbon dots formation through a combined spectroscopic approach. Nat. Commun. 2021, 12, 2640.

[29]

Song, Y. B.; Zhu, S. J.; Zhang, S. T.; Fu, Y.; Wang, L.; Zhao, X. H.; Yang, B. Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine. J. Mater. Chem. C 2015, 3, 5976–5984.

[30]

Wang, B. Y.; Song, H. Q.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Ethanol-derived white emissive carbon dots: The formation process investigation and multi-color/white LEDs preparation. Nano Res. 2022, 15, 942–949.

[31]

Tao, S. Y.; Zhou, C. J.; Kang, C. Y.; Zhu, S. J.; Feng, T. L.; Zhang, S. T.; Ding, Z. Y.; Zheng, C. Y.; Xia, C. L.; Yang, B. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Sci. Appl. 2022, 11, 56.

[32]

Vacher, M.; Galván, I. F.; Ding, B. W.; Schramm, S.; Berraud-Pache, R.; Naumov, P.; Ferré, N.; Liu, Y. J.; Navizet, I.; Roca-Sanjuán, D. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 2018, 118, 6927–6974.

[33]

Dou, X. N.; Lin, Z.; Chen, H.; Zheng, Y. Z.; Lu, C.; Lin, J. M. Production of superoxide anion radicals as evidence for carbon nanodots acting as electron donors by the chemiluminescence method. Chem. Commun. 2013, 49, 5871–5873.

[34]

Mao, D.; Wu, W. B.; Ji, S. L.; Chen, C.; Hu, F.; Kong, D. L.; Ding, D.; Liu, B. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem 2017, 3, 991–1007.

[35]

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910

[36]

Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

[37]

Li, D.; Jing, P. T.; Sun, L. H.; An, Y.; Shan, X. Y.; Lu, X. H.; Zhou, D.; Han, D.; Shen, D. Z.; Zhai, Y. C. et al. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv. Mater. 2018, 30, 1705913.

[38]

Li, D.; Liang, C.; Ushakova, E. V.; Sun, M. H.; Huang, X. D.; Zhang, X. Y.; Jing, P. T.; Yoo, S. J.; Kim, J. et al. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation. Small 2019, 15, 1905050.

[39]

Zhang, Q.; Wang, F. Q.; Wang, R. Y.; Liu, J. L.; Ma, Y. P. X.; Qin, X. R.; Zhong, X. X. Activating one/two-photon excited red fluorescence on carbon dots: Emerging n→ π photon transition induced by amino protonation. Adv. Sci. 2023, 10, 2207566.

[40]

Cao, M. Y.; Zhao, X. J.; Gong, X. Ionic liquid-assisted fast synthesis of carbon dots with strong fluorescence and their tunable multicolor emission. Small 2022, 18, 2106683.

[41]

Zeng, Q. S.; Feng, T. L.; Tao, S. Y.; Zhu, S. J.; Yang, B. Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): The nomenclature. Light: Sci. Appl. 2021, 10, 142.

[42]

Ma, Z. Z.; Shi, Z. F.; Qin, C. C.; Cui, M. H.; Yang, D. W.; Wang, X. J.; Wang, L. T.; Ji, X. Z.; Chen, X.; Sun, J. L. et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475–4486.

File
6456_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2023
Revised: 27 December 2023
Accepted: 28 December 2023
Published: 30 January 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

We gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. U2004168, 12074348, 11974317, 12261141661, and 62204223), the China Postdoctoral Science Foundation (No. 2022TQ0307), and the Natural Science Foundation of Henan Province (Nos. 212300410078 and 222102310664)

Return