Sort:
Open Access Research Article Online First
Electrocatalysis informatics assisted design of highly disordered ternary alloy aerogel for efficient methanol oxidation
Nano Research Energy
Published: 07 May 2025
Abstract PDF (13.8 MB) Collect
Downloads:110

The rational design of advanced methanol oxidation reaction (MOR) electrocatalysts can significantly enhance the catalytic activity and performance of direct methanol fuel cells (DMFCs). Herein, the electrocatalysis informatics-assisted design electrocatalysts for MOR is firstly conducted by combining machine learning based on 616 experimental data points with first-principles calculations. Guided by this theoretical insight, a highly disordered PtRuPd alloy aerogel is prepared via a facile one-pot synthetic strategy. The obtained electrocatalyst demonstrates excellent mass activity of 2.42 A·mgPt−1 and specific activity of 7.13 mA·cm−2 for MOR, which is considerably higher than that of most Pt-based catalysts. The self-supported ultrathin anode catalyst layer (~6.3 μm) integrated into a membrane electrode assembly exhibits the mass-specific power density of 92.9 W·gPt−1 at 65 °C for DMFC operation, surpassing that of recently reported Pt-based catalysts. This work offers a promising approach to exploring a digitalization and intelligent cross-scale design route for MOR electrocatalysts.

Research Article Issue
Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia
Nano Research 2024, 17(3): 1209-1216
Published: 14 August 2023
Abstract PDF (3.1 MB) Collect
Downloads:64

Electrocatalytic nitrate reduction reaction (NO3RR) offers a unique rationale for green NH3 synthesis, yet the lack of high-efficiency NO3RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO2 nanosheets can efficiently catalyze the conversion of NO3RR-to-NH3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 μg·h−1·mgcat.−1, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO2. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm−2 and a yield rate of 452 μg·h−1·mgcat.−1. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO3 species, and reduce the NO3RR-to-NH3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH3 electrosynthesis and nitrate removal.

Total 2