Journal Home > Volume 17 , Issue 3

Electrocatalytic nitrate reduction reaction (NO3RR) offers a unique rationale for green NH3 synthesis, yet the lack of high-efficiency NO3RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO2 nanosheets can efficiently catalyze the conversion of NO3RR-to-NH3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 μg·h−1·mgcat.−1, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO2. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm−2 and a yield rate of 452 μg·h−1·mgcat.−1. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO3 species, and reduce the NO3RR-to-NH3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH3 electrosynthesis and nitrate removal.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia

Show Author's information Miaosen Yang1,2Tianran Wei3,4Jia He5( )Qian Liu6Ligang Feng7Hongyi Li3,8( )Jun Luo9Xijun Liu4( )
School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China
Nanchang Institute of Technology, Nanchang 330044, China
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
Institute for Advanced Study, Chengdu University, Chengdu 610106, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Guangzhou Panyu Polytechnic, Guangzhou 511483, China
ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China

Abstract

Electrocatalytic nitrate reduction reaction (NO3RR) offers a unique rationale for green NH3 synthesis, yet the lack of high-efficiency NO3RR catalysts remains a great challenge. In this work, we show that Au nanoclusters anchored on TiO2 nanosheets can efficiently catalyze the conversion of NO3RR-to-NH3 under ambient conditions, achieving a maximal Faradic efficiency of 91%, a peak yield rate of 1923 μg·h−1·mgcat.−1, and high durability over 10 consecutive cycles, all of which are comparable to the recently reported metrics (including transition metal and noble metal-based catalysts) and exceed those of pristine TiO2. Moreover, a galvanic Zn-nitrate battery using the catalyst as the cathode was proposed, which shows a power density of 3.62 mW·cm−2 and a yield rate of 452 μg·h−1·mgcat.−1. Theoretical simulations further indicate that the atomically dispersed Au clusters can promote the adsorption and activation of NO3 species, and reduce the NO3RR-to-NH3 barrier, thus leading to an accelerated cathodic reaction. This work highlights the importance of metal clusters for the NH3 electrosynthesis and nitrate removal.

Keywords: NH3 electrosynthesis, Au nanoclusters, TiO2 nanosheets, Zn-nitrate battery, nitrate reduction reaction (NRR)

References(73)

[1]

van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

[2]

Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

[3]

Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

[4]

Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 950–957.

[5]

Deng, Z.; Ma, C.; Fan, X.; Li, Z.; Luo, Y.; Sun, S.; Zheng, D.; Liu, Q.; Du, J.; Lu, Q. et al. Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Mater. Today Phys. 2022, 28, 100854.

[6]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[7]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[8]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[9]

Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

[10]

Zeng, L. B.; Qiao, Z.; Peng, X. Y.; Liu, Z. B.; Li, Z. J.; Yang, B.; Lei, L. C.; Wu, G.; Hou, Y. Progress in Mo/W-based electrocatalysts for nitrogen reduction to ammonia under ambient conditions. Chem. Commun. 2022, 58, 2096–2111.

[11]

Kong, Y.; Wu, L.; Yang, X. X.; Li, Y.; Zheng, S. X.; Yang, B.; Li, Z. J.; Zhang, Q. H.; Zhou, S. D.; Lei, L. C. et al. Accelerating protonation kinetics for ammonia electrosynthesis on single iron sites embedded in carbon with intrinsic defects. Adv. Funct. Mater. 2022, 32, 2205409.

[12]

Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.

[13]

Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

[14]

Zhang, Q.; Lian, K.; Liu, Q.; Qi, G. C.; Zhang, S. S.; Luo, J.; Liu, X. J. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J. Colloid Interface Sci. 2023, 646, 844–854.

[15]

Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B:Environ. 2022, 316, 121651.

[16]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

[17]

Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: Theory versus experiment. Angew. Chem., Int. Ed. 2008, 47, 5512–5522.

[18]

Guo, Y.; Zhang, R.; Zhang, S. C.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Dong, B. B.; Zhi, C. Y. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ. Sci. 2021, 14, 3938–3944.

[19]

Zhang, R.; Guo, Y.; Zhang, S. C.; Chen, D.; Zhao, Y. W.; Huang, Z. D.; Ma, L. T.; Li, P.; Yang, Q.; Liang, G. J. et al. Efficient ammonia electrosynthesis and energy conversion through a Zn-nitrate battery by iron doping engineered nickel phosphide catalyst. Adv. Energy Mater. 2022, 12, 2103872.

[20]

Chen, J.; Zhou, Q.; Yue, L. C.; Zhao, D. L.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A.; Hamdy, M. S. et al. Co-NCNT nanohybrid as a highly active catalyst for the electroreduction of nitrate to ammonia. Chem. Commun. 2022, 58, 3787–3790.

[21]

Wu, X.; Ma, A. J.; Hu, J.; Liu, D.; Kuvarega, A. T.; Mamba, B. B.; Gui, J. Z. Amorphous nickel-iron hydroxide nanosheets for effective electroreduction of nitrate to ammonia. Inorg. Chem. Front. 2023, 10, 666–674.

[22]

Duca, M.; Koper, M. T. M. Powering denitrification: The perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci. 2012, 5, 9726–9742.

[23]

Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.

[24]

Yandulov, D. V.; Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 2003, 301, 76–78.

[25]

Li, X.; Zhao, X.; Zhou, Y. T.; Hu, J.; Zhang, H. C.; Hu, X.; Hu, G. Z. Pd nanocrystals embedded in BC2N for efficient electrochemical conversion of nitrate to ammonia. Appl. Surf. Sci. 2022, 584, 152556.

[26]

Duca, M.; Sacré, N.; Wang, A.; Garbarino, S.; Guay, D. Enhanced electrocatalytic nitrate reduction by preferentially-oriented(100) PtRh and PtIr alloys: The hidden treasures of the “miscibility gap”. Appl. Catal. B:Environ. 2018, 221, 86–96.

[27]

Gou, F. L.; Wang, H.; Fu, M. M.; Jiang, Y. M.; Shen, W.; He, R. X.; Li, M. Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media. Appl. Surf. Sci. 2023, 612, 155872.

[28]
. Fan, X. Y.; Xie, L. S.; Liang, J.; Ren, Y. C.; Zhang, L. C.; Yue, L. C.; Li, T. S.; Luo, Y. L.; Li, N.; Tang, B. et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Res. 2022, 15, 3050–3055.
DOI
[29]

Saha, P.; Amanullah, S.; Dey, A. Electrocatalytic reduction of nitrogen to hydrazine using a trinuclear nickel complex. J. Am. Chem. Soc. 2020, 142, 17312–17317.

[30]

Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

[31]

Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.

[32]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[33]

Li, L. L.; ul Hasan, I. M.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[34]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[35]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[36]

Rehman, F.; Kwon, S.; Musgrave III, C. B.; Tamtaji, M.; Goddard III, W. A.; Luo, Z. T. High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy 2022, 103, 107866.

[37]

Wang, Y.; Shao, M. H. Theoretical screening of transition metal-N4-doped graphene for electroreduction of nitrate. ACS Catal. 2022, 12, 5407–5415.

[38]

Yang, P.; Guo, H.; Wu, H. R.; Zhang, F. Y.; Liu, J. X.; Li, M. Y.; Yang, Y. T.; Cao, Y. H.; Yang, G. D.; Zhou, Y. Boosting charge-transfer in tuned Au nanoparticles on defect-rich TiO2 nanosheets for enhancing nitrogen electroreduction to ammonia production. J. Colloid Interface Sci. 2023, 636, 184–193.

[39]

Zhao, S.; Liu, H. X.; Qiu, Y.; Liu, S. Q.; Diao, J. X.; Chang, C. R.; Si, R.; Guo, X. H. An oxygen vacancy-rich two-dimensional Au/TiO2 hybrid for synergistically enhanced electrochemical N2 activation and reduction. J. Mater. Chem. A 2020, 8, 6586–6596.

[40]

El-Deab, M. S. Electrochemical reduction of nitrate to ammonia at modified gold electrodes. Electrochim. Acta 2004, 49, 1639–1645.

[41]

Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 Nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105–9114.

[42]

Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

[43]

Roguska, A.; Kudelski, A.; Pisarek, M.; Opara, M.; Janik-Czachor, M. Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate. Appl. Surf. Sci. 2011, 257, 8182–8189.

[44]

Zhao, D. L.; Ma, C. Q.; Li, J.; Li, R. Z.; Fan, X. Y.; Zhang, L. C.; Dong, K.; Luo, Y. S.; Zheng, D. D.; Sun, S. J. et al. Direct eight-electron NO3-to-NH3 conversion: Using a Co-doped TiO2 nanoribbon array as a high-efficiency electrocatalyst. Inorg. Chem. Front. 2022, 9, 6412–6417.

[45]

Li, Y.; Yang, Y. L.; Chen, G.; Fan, J. J.; Xiang, Q. J. Au cluster anchored on TiO2/Ti3C2 hybrid composites for efficient photocatalytic CO2 reduction. Rare Met. 2022, 41, 3045–3059.

[46]

Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657.

[47]

Wei, T. R.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Oxygen vacancy-rich amorphous copper oxide enables highly selective electroreduction of carbon dioxide to ethylene. Acta Phys. -Chim. Sin. 2023, 39, 2207026.

[48]

Dong, S. Y.; Niu, A. H.; Wang, K. H.; Hu, P. J.; Guo, H. R.; Sun, S. J.; Luo, Y. S.; Liu, Q.; Sun, X. P.; Li, T. S. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Appl. Catal. B:Environ. 2023, 333, 122772.

[49]

Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M. et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.

[50]

Nguyen, V. M.; Nguyen, T. D. CdS/Au/TiO2 nanowire composite as selective, sensitive and reliable immunosensors for detecting octachlorostyrene under visible light. Sensors Actuat. A:Phys. 2022, 347, 113908.

[51]
. Wang, H. P.; Zhang, F.; Jin, M. M.; Zhao, D. L.; Fan, X. Y.; Li, Z. R.; Luo, Y. S.; Zheng, D. D.; Li, T. S.; Wang, Y. et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Mater. Today Phys. 2023, 30, 100944.
DOI
[52]

Wei, T. R.; Liu, W. X.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445.

[53]

Wei, T. R.; Bao, H. H.; Wang, X. Z.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Ionic liquid-assisted electrocatalytic NO reduction to NH3 by P-doped MoS2. ChemCatChem 2023, 15, e202201411.

[54]

Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.

[55]

Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B:Environ. 2022, 307, 121145.

[56]

Jin, M. M.; Liu, S.; Meng, G.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Low-coordinated Mo clusters for high-efficiency electrocatalytic hydrogen peroxide production. Adv. Mater. Interf. 2023, 10, 2201144.

[57]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[58]
. Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z. X.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.
DOI
[59]

Zhang, S.; Gao, X. T.; Hou, P. F.; Zhang, T. R.; Kang, P. Nitrogen-doped Zn-Ni oxide for electrochemical reduction of carbon dioxide in sea water. Rare Met. 2021, 40, 3117–3124.

[60]

Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. 2023, 16, 2325–2346.

[61]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[62]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[63]

Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Structures 2022, 3, 2200086.

[64]

Zhang, H.; Wei, T. R.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Recent progress in metal phosphorous chalcogenides: Potential high-performance electrocatalysts. Small 2023, 19, 2207249.

[65]

Chen, S. S.; Lian, K.; Liu, W. X.; Liu, Q.; Qi, G. C.; Luo, J.; Liu, X. J. Engineering active sites of cathodic materials for high-performance Zn-nitrogen batteries. Nano Res., 2023, 16, 9214–9230.

[66]

Shen, P.; Wang, G. H.; Chen, K.; Kang, J. L.; Ma, D. W.; Chu, K. Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 563–570.

[67]

Ding, J. Y.; Hou, X. H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. Inorg. Chem. Commun. 2023, 151, 110621.

[68]

Zhang, S. C.; Liu, Q.; Tang, X. Y.; Zhou, Z. M.; Fan, T. Y.; You, Y. M.; Zhang, Q. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes. Front. Chem. Sci. Eng. 2023, 17, 726–734.

[69]

Mi, L. R.; Huo, Q. H.; Cao, J. Y.; Chen, X. B.; Yang, H. P.; Hu, Q.; He, C. X. Achieving synchronization of electrochemical production of ammonia from nitrate and ammonia capture by constructing a “two-in-one” flow cell electrolyzer. Adv. Energy Mater. 2022, 12, 2202247.

[70]

Feng, T.; Li, F. T.; Hu, X. J.; Wang, Y. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chin. Chem. Lett. 2023, 34, 107862.

[71]

Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.

[72]

Zou, X. Y.; Xie, J. W.; Wang, C. H.; Jiang, G. M.; Tang, K.; Chen, C. J. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. Chin. Chem. Lett. 2023, 34, 107908.

[73]
. Tang, M.; Tong, Q. W.; Li, Y. M.; Jiang, R. C.; Shi, L.; Shen, F.; Wei, Y. L.; Liu, Z. X.; Liu, S. Y.; Zhang, J. et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2023.108410.
DOI
File
12274_2023_5997_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2023
Revised: 04 July 2023
Accepted: 10 July 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22075211 and 51971157), the Guangzhou Basic & Applied Basic Research Project (No. 202201011853), the Shenzhen Science and Technology Program (Nos. JCYJ20210324115412035, JCYJ20210324123202008, JCYJ20210324122803009, and ZDSYS20210813095534001), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515110880), and the Tianjin Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800).

Return