Sort:
Open Access Research Article Issue
Water-based synthesis of nanoscale hierarchical metal-organic frameworks: Boosting adsorption and catalytic performance
Nano Materials Science 2023, 5 (4): 361-368
Published: 06 October 2022
Downloads:2

The combination of nano sizes, large pore sizes and green synthesis is recognized as one of the most crucial and challenging problems in constructing metal-organic frameworks (MOFs). Herein, a water-based strategy is proposed for the synthesis of nanoscale hierarchical MOFs (NH-MOFs) with high crystallinity and excellent stability. This approach allows the morphology and porosity of MOFs to be fine tuned, thereby enabling the nanoscale crystal generation and a well-defined hierarchical system. The aqueous solution facilitates rapid nucleation kinetics, and the introduced modulator acts as a deprotonation agent to accelerate the deprotonation of the organic ligand as well as a structure-directing agent (SDA) to guide the formation of hierarchical networks. The as-synthesized NH-MOFs (NH-ZIF-67) were assessed as efficient adsorbents and heterogeneous catalysts to facilitate the diffusion of guest molecules, outperforming the parent microZIF-67. This study focuses on understanding the NH-MOF growth rules, which could allow tailor-designing NH-MOFs for various functions.

Open Access Review Article Issue
Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks
Nano Materials Science 2022, 4 (4): 351-365
Published: 13 January 2022
Downloads:7

Nanoscale hierarchically porous metal–organic frameworks (NHP-MOFs) have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size (< 1 ​μm) and hierarchical porous structure (micro-, meso- and/or macro-pores) of MOFs. This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions (e.g., Cu, Fe, Co, Zn, Al, Zr, and Cr), including the template method, composite technology, post-synthetic modification, in situ growth and the grind method. In addition, the mechanisms of synthesis, regulation techniques and the advantages and disadvantages of various methods are discussed. Finally, the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented. The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.

total 2