Review Article Issue
Synthesis and application of green solvent dispersed organic semiconducting nanoparticles
Nano Research 2023, 16 (12): 13419-13433
Published: 01 April 2023
Abstract PDF (9 MB) Collect

Organic photovoltaic semiconductors have made significant progress and have promising application prospects after decades of development. When compared with traditional semiconductors, the solution method for preparing photovoltaic semiconductors shows the advantages of low cost and convenient preparation. However, because of the extremely poor solubility of the polymers used to prepare semiconductors, toxic solvents must be used when using the solution method, which has significant negative effects on the environment and operators and severely limits its development prospects. Organic nanoparticles (NPs), on the other hand, can avoid these issues. Because NPs are typically water or alcohol-based, no toxic solvents are used. Furthermore, NPs have been used in organic solar cells, hydrogen catalysis, organic light-emitting diodes, and other fields after nearly two decades of development, and their preparation methods have been developed. We describe the preparation, optimization, and application of NPs in photovoltaic semiconductors in this review.

Review Article Issue
Development and application of blade-coating technique in organic solar cells
Nano Research 2023, 16 (9): 11571-11588
Published: 26 March 2023
Abstract PDF (8.8 MB) Collect

Due to the characteristics of lower material waste, higher crystallinity, roll-to-roll compatibility, and high-throughput continuous processing, blade-coating has been widely applied in the preparation of large-area organic solar cells. In this paper, the technique of blade-coating is introduced, including the effects of blading speed, substrate temperature, and other technological innovations during the process of blade-coating. Besides, the recent progress of blade-coating in organic solar cells is summarized and the active layer prepared by a blade-coating method is introduced in detail, including materials, processing methods, solvents, and additives. The interface layer and electrodes prepared by the blade-coating method are also discussed. Finally, some perspectives on the blade-coating method are proposed. In the foreseeable future, blade-coating will become the core of batch production of large-area organic solar cells, so as to make organic solar cells more competitive.

Total 2