Sort:
Research Article Just accepted
Tuning Microstructures of Mg–Ce–Ni Hydrogen Storage Alloys via Cu and Carbon Nanotube Additions
Nano Research
Available online: 22 April 2024
Downloads:16

Mg-based alloys are regarded as highly promising materials for hydrogen storage. Despite significant improvements of the properties for Mg-based alloys, challenges such as slow hydrogen absorption/desorption kinetics and high thermodynamic stability continue to limit their practical application. In this study, to assess hydrogen storage alloys with enhanced properties, incorporating both internal microstructure modulation through the preparation of amorphous/nanocrystalline structures and surface property enhancement with the addition of Cu and CNTs, the kinetic properties of activation and hydrogenation, thermodynamic properties, and dehydrogenation kinetics are tested. The results reveal a complementary interaction between the added Cu and CNTs, contributing to the superior hydrogen storage performance observed in sample 7A-2Cu-1CNTs with an amorphous/nanocrystalline structure compared to the other experimental samples. Additionally, the samples are fully activated after the initial hydrogen absorption and desorption cycle, demonstrating outstanding hydrogenation kinetics under both high and low temperature experimental conditions. Particularly noteworthy is the hydrogen absorption exceeds 1.8 wt.% within one hour at 333 K. Furthermore, the activation energy for dehydrogenation is decreased to 64.71 kJ mol-1. This research may offer novel insights for the design of new-type Mg-based hydrogen storage alloys, which possess milder conditions for hydrogen absorption and desorption.

Research Article Issue
Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3
Nano Research 2023, 16 (7): 9546-9552
Published: 30 June 2023
Downloads:74

Aluminum hydride is a promising chemical hydrogen storage material that can achieve dehydrogenation under mild conditions as well as high hydrogen storage capacity. However, designing an efficient and cost-effective catalyst, especially a synergistic catalyst, for realizing low-temperature and high-efficiency hydrogen supply remains challenging. In this study, the heterojunction synergistic catalyst of Ti3C2 supported PrF3 nanosheets considerably improved the dehydrogenation kinetics of AlH3 at low temperatures and maintained a high hydrogen storage capacity. In the synergistic catalyst, Pr produced a synergistic coupling interaction through its unique electronic structure. The sandwich structure with close contact between the two phases enhanced the interaction between species and the synergistic effect. The initial dehydrogenation temperature of the composite is reduced to 70.2 °C, and the dehydrogenation capacity is 8.6 wt.% at 120 °C in 90 min under the kinetic test, which reached 93% of the theoretical hydrogen storage capacity. The catalyst considerably reduced the activation energy of the dehydrogenation reaction. Furthermore, the multielectron pairs on the surface of the catalyst promoted electron transfer and accelerated the reaction.

Research Article Issue
Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies
Nano Research 2023, 16 (7): 9426-9434
Published: 20 April 2023
Downloads:36

Complex hydride LiAlH4, as a hydrogen storage material, possesses high theoretical hydrogen storage capacity (10.5 wt.%). However, highly efficient additives are urgently required to modify its thermal stability and sluggish kinetics. Some additives exhibit unique morphology-dependent characteristics. Herein, the efficient rare earth oxide nano-CeO2 additives with different morphologies (nanoparticles, nanocubes, and nanorods) are prepared by the hydrothermal method, and the intrinsic properties are characterized. The three different morphologies of nano-CeO2, which are different in the Ce3+ content and specific surface area, are added to LiAlH4 to improve the dehydrogenation behavior. The LiAlH4-CeO2-nanorod composite exhibits the optimal dehydrogenation behavior, which begins to desorb hydrogen at 76.6 °C with a hydrogen capacity of 7.17 wt.%, and 3.83 wt.% hydrogen is desorbed within 30 min at 140 °C. The dehydrogenation process of the composites demonstrates that hydrogen release is facilitated by the in-situ formed CeH2.73 and the facile transition between the oxidation states of Ce4+ and Ce3+. Combined with density functional theory calculations, the addition of nano-CeO2 can weaken the Al–H bond and accelerate the decomposition of [AlH4]4− tetrahedron, which is consistent with the reduction of the decomposition activation energy.

Research Article Issue
Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion (Li+/Na+/K+) storages
Nano Research 2023, 16 (1): 1642-1650
Published: 08 November 2022
Downloads:54

SnO2-based anode materials have attracted much attention due to high capacity and relatively mild voltage platforms. However, limited by low initial Coulombic efficiency (ICE) and poor stability, its practical application is still challenging. Recently, it has been found that compositing carbon or metal particles with SnO2 is an effective strategy to achieve high alkaline-ion storages. Although this strategy may improve the kinetics and ICE of the electrochemical reaction, the specific mechanism has not been clearly elucidated. In this work, we found that the invalidation SnO2 may go through two steps: 1) the conversion process from SnO2 to Sn and Li2O; 2) the collapse of the electrode material resulted from huge volume changes during the alloyed Sn with alkaline ions. To address these issues, a unique robust Co-NC shell derived from ZIF-67 is introduced, in which the transited metallic Co nanoparticles could accelerate the decomposition of Sn-O and Li-O bonds, thus expedite the kinetics of conversion reaction. As a result, the SnO2@Co-NC electrode achieves a more complete and efficient transfer between SnO2 and Sn phases, possessing a potential to achieve high alkaline-ion (Li+/Na+/K+) storages.

total 4