Journal Home > Volume 16 , Issue 7

Aluminum hydride is a promising chemical hydrogen storage material that can achieve dehydrogenation under mild conditions as well as high hydrogen storage capacity. However, designing an efficient and cost-effective catalyst, especially a synergistic catalyst, for realizing low-temperature and high-efficiency hydrogen supply remains challenging. In this study, the heterojunction synergistic catalyst of Ti3C2 supported PrF3 nanosheets considerably improved the dehydrogenation kinetics of AlH3 at low temperatures and maintained a high hydrogen storage capacity. In the synergistic catalyst, Pr produced a synergistic coupling interaction through its unique electronic structure. The sandwich structure with close contact between the two phases enhanced the interaction between species and the synergistic effect. The initial dehydrogenation temperature of the composite is reduced to 70.2 °C, and the dehydrogenation capacity is 8.6 wt.% at 120 °C in 90 min under the kinetic test, which reached 93% of the theoretical hydrogen storage capacity. The catalyst considerably reduced the activation energy of the dehydrogenation reaction. Furthermore, the multielectron pairs on the surface of the catalyst promoted electron transfer and accelerated the reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterojunction synergistic catalysis of MXene-supported PrF3 nanosheets for the efficient hydrogen storage of AlH3

Show Author's information Long Liang1,2Shaolei Zhao1,2Chunli Wang1( )Dongming Yin1,2Shaohua Wang3,4( )Qingshuang Wang5Fei Liang1Shouliang Li6Limin Wang1,2Yong Cheng1( )
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, GRINM Group Co., Ltd., Beijing 100088, China
GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
College of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
Henan Nayu New Material Co., Ltd., Xinxiang 453000, China

Abstract

Aluminum hydride is a promising chemical hydrogen storage material that can achieve dehydrogenation under mild conditions as well as high hydrogen storage capacity. However, designing an efficient and cost-effective catalyst, especially a synergistic catalyst, for realizing low-temperature and high-efficiency hydrogen supply remains challenging. In this study, the heterojunction synergistic catalyst of Ti3C2 supported PrF3 nanosheets considerably improved the dehydrogenation kinetics of AlH3 at low temperatures and maintained a high hydrogen storage capacity. In the synergistic catalyst, Pr produced a synergistic coupling interaction through its unique electronic structure. The sandwich structure with close contact between the two phases enhanced the interaction between species and the synergistic effect. The initial dehydrogenation temperature of the composite is reduced to 70.2 °C, and the dehydrogenation capacity is 8.6 wt.% at 120 °C in 90 min under the kinetic test, which reached 93% of the theoretical hydrogen storage capacity. The catalyst considerably reduced the activation energy of the dehydrogenation reaction. Furthermore, the multielectron pairs on the surface of the catalyst promoted electron transfer and accelerated the reaction.

Keywords: catalysis, synergistic effect, dehydrogenation, hydrogen storage, aluminium hydride

References(40)

[1]

Liu, S. Y.; Shui, J. L. Mechanism and properties of emerging nanostructured hydrogen storage materials. Battery Energy 2022, 1, 20220033.

[2]

Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res. 2021, 14, 507–511.

[3]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

[4]

Hao, A. H.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy 2022, 1, e9120013.

[5]

Zhang, J. G.; Zhu, Y. F.; Lin, H. J.; Liu, Y. N.; Zhang, Y.; Li, S. Y.; Ma, Z. L.; Li, L. Q. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv. Mater. 2017, 29, 1700760.

[6]

Zhang, H. B.; Ye, J. C.; Wu, X. G.; Hu, X. W.; Hu, H. Z.; Ma, C. M.; Chen, Q. J. Effect of La doping on kinetic and thermodynamic performances of Ti1.2CrMn alloy upon de/hydrogenation. ACS Omega 2022, 7, 40807–40814.

[7]

Li, Z. L.; Sheng, L.; Hsueh, C.; Wang, X. L.; Cui, H.; Gao, H. Q.; Wu, Y. Z.; Wang, J. L.; Tang, Y. P.; Xu, H. et al. Three-dimensional covalent organic frameworks with hea topology. Chem. Mater. 2021, 33, 9618–9623.

[8]

Nakagawa, Y.; Isobe, S.; Wang, Y. M.; Hashimoto, N.; Ohnuki, S.; Zeng, L.; Liu, S. S.; Ichikawa, T.; Kojima, Y. Dehydrogenation process of AlH3 observed by TEM. J. Alloys Compd. 2013, 580, S163–S166.

[9]

Duan, C. W.; Su, Z. H.; Cao, Y. Z.; Hu, L. X.; Fu, D.; Ma, J. L.; Zhang, Y. L. Synthesis of core–shell α-AlH3@Al(OH)3 nanocomposite with improved low-temperature dehydriding properties by mechanochemical mixing and ionic liquid treatment. J. Clean. Prod. 2021, 283, 124635.

[10]

Duan, C. W.; Hu, L. X.; Sun, Y.; Wan, Z. P. Hydrogen desorption behaviour and microstructure evolution of a γ-AlH3/MgCl2 nano-composite during dehydriding. RSC Adv. 2016, 6, 74215–74224.

[11]

Kempa, P. B.; Thome, V.; Herrmann, M. Structure, chemical and physical behavior of aluminum hydride. Part. Part. Syst. Charact. 2009, 26, 132–137.

[12]

Deng, J. F.; Sun, B. X.; Xu, J. R.; Shi, Y.; Xie, L.; Zheng, J.; Li, X. G. A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells. Inorg. Chem. Front. 2021, 8, 35–40.

[13]

Thampan, T.; Shah, D.; Cook, C.; Shah, S.; Atwater, T. Development and user evaluation of an AlH3 wearable power system (WPS). ECS Trans. 2015, 65, 205–217.

[14]

Wen, X. B.; Liang, H. R.; Zhao, R. L.; Hong, F. F.; Shi, W. T.; Liu, H. Z.; Chen, H. Q.; Zhou, W. Z.; Guo, J.; Lan, Z. Q. Regulation of the integrated hydrogen storage properties of magnesium hydride using 3D self-assembled amorphous carbon-embedded porous niobium pentoxide. J. Mater. Chem. A 2022, 10, 16941–16951.

[15]

Zhang, L. C.; Wang, K.; Liu, Y. F.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G. Highly active multivalent multielement catalysts derived from hierarchical porous TiNb2O7 nanospheres for the reversible hydrogen storage of MgH2. Nano Res. 2021, 14, 148–156.

[16]

Meng, Y. L.; Sun, Q. H.; Zhang, T. J.; Zhang, J. C.; Dong, Z. Y.; Ma, Y. H.; Wu, Z. X.; Wang, H. F.; Bao, X. G.; Sun, Q. M. et al. Cobalt-promoted noble-metal catalysts for efficient hydrogen generation from ammonia borane hydrolysis. J. Am. Chem. Soc. 2023, 145, 5486–5495.

[17]

He, J. H.; Huang, Z. W.; Chen, W. Z.; Xiao, X. Z.; Yao, Z. D.; Liang, Z. Q.; Zhan, L. J.; Lv, L.; Qi, J. C.; Fan, X. L. et al. 0D/1D/2D Co@Co2Mo3O8 nanocomposite constructed by mutual-supported Co2Mo3O8 nanosheet and Co nanoparticle: Synthesis and enhanced hydrolytic dehydrogenation of ammonia borane. Chem. Eng. J. 2022, 431, 133697.

[18]

Lan, Z. Q.; Fu, H.; Zhao, R. L.; Liu, H. Z.; Zhou, W. Z.; Ning, H.; Guo, J. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 2022, 431, 133985.

[19]

Zang, J. H.; Wang, S. F.; Wang, F.; Long, Z. Y.; Mo, F. J.; Xia, Y. H.; Fang, F.; Song, Y.; Sun, D. L. Li-triggered superior catalytic activity of V in Li3VO4: Enabling fast and full hydrogenation of Mg at lower temperatures. J. Mater. Chem. A 2020, 8, 14935–14943.

[20]

Chen, M.; Pu, Y. H.; Li, Z. Y.; Huang, G.; Liu, X. F.; Lu, Y.; Tang, W. K.; Xu, L.; Liu, S. Y.; Yu, R. H. et al. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020, 13, 2063–2071.

[21]

Lin, H. J.; Tang, J. J.; Yu, Q.; Wang, H.; Ouyang, L. Z.; Zhao, Y. J.; Liu, J. W.; Wang, W. H.; Zhu, M. Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump. Nano Energy. 2014, 9, 80–87.

[22]

Yang, J. X.; Liang, F.; Cheng, Y.; Yin, D. M.; Wang, L. M. Improvement of dehydrogenation performance by adding CeO2 to α-AlH3. Int. J. Hydrogen Energy 2020, 45, 2119–2126.

[23]

Kong, Q. Q.; Zhang, H. H.; Yuan, Z. L.; Liu, J. M.; Li, L. X.; Fan, Y. P.; Fan, G. X.; Liu, B. Z. Hamamelis-like K2Ti6O13 synthesized by alkali treatment of Ti3C2 MXene: Catalysis for hydrogen storage in MgH2. ACS Sustainable Chem. Eng. 2020, 8, 4755–4763.

[24]

Ma, Z. L.; Tang, Q. K.; Ni, J. L.; Zhu, Y. F.; Zhang, Y.; Li, H. W.; Zhang, J. G.; Liu, Y. N.; Ba, Z. X.; Li, L. Q. Synergistic effect of TiH2 and air exposure on enhancing hydrogen storage performance of Mg2NiH4. Chem. Eng. J. 2022, 433, 134489.

[25]

Gao, H. G.; Shao, Y. T.; Shi, R.; Liu, Y. N.; Zhu, J. L.; Liu, J. C.; Zhu, Y. F.; Zhang, J. G.; Li, L. Q.; Hu, X. H. Effect of few-layer Ti3C2Tx supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2. ACS Appl. Mater. Interfaces 2020, 12, 47684–47694.

[26]

Liu, J. C.; Zhang, M. C.; Tang, Q. K.; Zhao, Y. Y.; Zhang, J. G.; Zhu, Y. F.; Liu, Y. N.; Hu, X. H.; Li, L. Q. Supra hydrolytic catalysis of Ni3Fe/rGO for hydrogen generation. Adv. Sci. 2022, 9, e2201428.

[27]

Wang, K.; Zhang, X.; Liu, Y. F.; Ren, Z. H.; Zhang, X. L.; Hu, J. J.; Gao, M. X.; Pan, H. G. Graphene-induced growth of N-doped niobium pentaoxide nanorods with high catalytic activity for hydrogen storage in MgH2. Chem. Eng. J. 2021, 406, 126831.

[28]

Liang, L.; Wang, C. L.; Ren, M. G.; Li, S. L.; Wu, Z. J.; Wang, L. M.; Liang, F. Unraveling the synergistic catalytic effects of TiO2 and Pr6O11 on superior dehydrogenation performances of α-AlH3. ACS Appl. Mater. Interfaces 2021, 13, 26998–27005.

[29]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[30]

Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

[31]

Liu, J.; Lu, W.; Lu, X. F.; Zhang, L.; Dong, H. F.; Li, Y. C. Versatile Ti3C2Tx MXene for free-radical scavenging. Nano Res. 2022, 15, 2558–2566.

[32]

Wang, Y. H.; Fan, G. X.; Zhang, D. F.; Fan, Y. P.; Liu, B. Z. Striking enhanced effect of PrF3 particles on Ti3C2 MXene for hydrogen storage properties of MgH2. J. Alloys Compd. 2022, 914, 165291.

[33]

Zhao, S. L.; Liang, L.; Liu, B. Z.; Wang, L. M.; Liang, F. Superior dehydrogenation performance of α-AlH3 catalyzed by Li3N: Realizing 8.0 wt.% capacity at 100 degrees C. Small 2022, 18, e2107983.

[34]

Liang, L.; Yang, Q. Q.; Zhao, S. L.; Wang, L. M.; Liang, F. Excellent catalytic effect of LaNi5 on hydrogen storage properties for aluminium hydride at mild temperature. Int. J. Hydrogen Energy 2021, 46, 38733–38740.

[35]

Liu, H. Z.; He, S. X.; Li, G. X.; Wang, Y.; Xu, L.; Sheng, P.; Wang, X. H.; Jiang, T.; Huang, C. K.; Lan, Z. Q. et al. Directed stabilization by air-milling and catalyzed decomposition by layered titanium carbide toward low-temperature and high-capacity hydrogen storage of aluminum hydride. ACS Appl. Mater. Interfaces 2022, 14, 42102–42112.

[36]

Liang, L.; Zhang, C. M.; Zhao, S. L.; Liu, B. Z.; Wang, L. M.; Liang, F. Platinum-functionalized MXene serving as electron transport layer for highly efficiently catalyze dehydrogenation of AlH3 with capacity of 9.3 wt.%. Chem. Eng. J. 2023, 451, 138791.

[37]

Sandrock, G.; Reilly, J.; Graetz, J.; Zhou, W. M.; Johnson, J.; Wegrzyn, J. Alkali metal hydride doping of α-AlH3 for enhanced H2 desorption kinetics. J. Alloys Compd. 2006, 421, 185–189.

[38]
Zhang, C. M.; Liang, L.; Zhao, S. L.; Wu, Z. J.; Wang, S. H.; Yin, D. M.; Wang, Q. S.; Wang, L. M.; Wang, C. L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res., in press, https://doi.org/10.1007/s12274-023-5636-8.
[39]

Hao, X. D.; Zhang, X. S.; Xu, Y.; Zhou, Y. H.; Wei, T. T.; Hu, Z. Z.; Wu, L.; Feng, X. Y.; Zhang, J.; Liu, Y. et al. Atomic-scale insights into the interfacial charge transfer in a NiO/CeO2 heterostructure for electrocatalytic hydrogen evolution. J. Colloid Interface Sci. 2023, 643, 282–291.

[40]

Zang, L.; Sun, W. Y.; Liu, S.; Huang, Y. K.; Yuan, H. T.; Tao, Z. L.; Wang, Y. J. Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl. Mater. Interfaces 2018, 10, 19598–19604.

File
12274_2023_5875_MOESM1_ESM.pdf (1.4 MB)
12274_2023_5875_MOESM2_ESM.pdf (606.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 April 2023
Revised: 25 May 2023
Accepted: 28 May 2023
Published: 30 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledged the National Key Research and Development Program of China (No. 2021YFB4000604), Key R&D projects of Jilin Provincial Science and Technology Development Plan (Nos. 20230201125GX, 20230201140GX, and 20200401039GX), Special fund of Scientific and Technological Cooperation Program between Jilin Province and Chinese Academy of Sciences (No. 2021SYHZ0045), Jilin Scientific and Technological Development Program (No. 20200401039GX), State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization (No. 2021H2270), Youth Innovation Promotion Association CAS (No. 2021225), and Youth Growth Science and Technology Program of Jilin Province (No. 20220508001RC).

Return