Open Access Review Article Issue
A review of deep learning methods for cross-subject rapid serial visual presentation detection in World Robot Contest 2022
Brain Science Advances 2023, 9 (3): 195-209
Published: 05 September 2023

The rapid serial visual presentation (RSVP) paradigm has garnered considerable attention in brain–computer interface (BCI) systems. Studies have focused on using cross-subject electroencephalogram data to train cross-subject RSVP detection models. In this study, we performed a comparative analysis of the top 5 deep learning algorithms used by various teams in the event-related potential competition of the BCI Controlled Robot Contest in World Robot Contest 2022. We evaluated these algorithms on the final data set and compared their performance in cross-subject RSVP detection. The results revealed that deep learning models can achieve excellent results with appropriate training methods when applied to cross-subject detection tasks. We discussed the limitations of existing deep learning algorithms in cross-subject RSVP detection and highlighted potential research directions.

Open Access Research Article Issue
An improved EEGNet for single-trial EEG classification in rapid serial visual presentation task
Brain Science Advances 2022, 8 (2): 111-126
Published: 29 June 2022

As a new type of brain-computer interface (BCI), the rapid serial visual presentation (RSVP) paradigm has attracted significant attention. The mechanism of RSVP is detecting the P300 component corresponding to the target image to realize fast and correct recognition. This paper proposed an improved EEGNet model to achieve good performance in offline and online data. Specifically, the data were filtered by xDAWN to enhance the signal-to-noise ratio of the electroencephalogram (EEG) signals. The focal loss function was used instead of the cross-entropy loss function to solve the classification problems of unbalanced samples. Additionally, the subject-specific data were fed to the improved EEGNet model to obtain a subject-specific model. We applied the proposed model at the BCI Controlled Robot Contest in World Robot Contest 2021 and won the second place. The average recall rate of the four participants reached 51.56% in triple classification. In the offline data benchmark dataset (64 subjects-RSVP tasks), the average recall rates of groups A and B reached 76.07% and 78.11%, respectively. We provided an alternative method to identify targets based on the RSVP paradigm.

total 2