Sort:
Open Access Research Article Issue
In-situ observation and mechanism of calcium–magnesium–alumina–silicate (CMAS) melts-induced degradation of RE2SiO5 (RE = Tb, Dy, Ho, Y, Er, Tm, and Yb) ceramics at 1500 °C
Journal of Advanced Ceramics 2023, 12 (12): 2315-2330
Published: 04 January 2024
Downloads:230

Rare earth (RE) silicate is one of the most promising environmental barrier coatings for silicon-based ceramics in gas turbine engines. However, calcium–magnesium–alumina–silicate (CMAS) corrosion becomes much more serious and is the critical challenge for RE silicate with the increasing operating temperature. Therefore, it is quite urgent to clarify the mechanism of high-temperature CMAS-induced degradation of RE silicate at relatively high temperatures. Herein, the interaction between RE2SiO5 and CMAS up to 1500 ℃ was investigated by a novel high-temperature in-situ observation method. High temperature promotes the growth of the main reaction product (Ca2RE8(SiO4)6O2) fast along the [001] direction, and the precipitation of short and horizontally distributed Ca2RE8(SiO4)6O2 grains was accelerated during the cooling process. The increased temperature increases the solubility of RE elements, decreases the viscosity of CMAS, and thus elevates the corrosion reaction rate, making RE2SiO5 fast interaction with CMAS and less affected by RE element species.

Open Access Research Article Issue
Rare earth monosilicates as oxidation resistant interphase for SiCf/SiC CMC: Investigation of SiCf/Yb2SiO5 model composites
Journal of Advanced Ceramics 2022, 11 (5): 702-711
Published: 21 March 2022
Downloads:182

Model composites consisting of SiC fiber and Yb2SiO5 were processed by the spark plasma sintering (SPS) method. The mechanical compatibility and chemical stability between Yb2SiO5 and SiC fiber were studied to evaluate the potential application of Yb monosilicate as the interphase of silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiCf/SiC CMC). Two kinds of interfaces, namely mechanical and chemical bonding interfaces, were achieved by adjusting sintering temperature. SiCf/Yb2SiO5 interfaces prepared at 1450 and 1500 ℃ exhibit high interface strength and debond energy, which do not satisfy the crack deflection criteria based on He–Hutchison diagram. Raman spectrum analyzation indicates that the thermal expansion mismatch between Yb2SiO5 and SiC contributes to high compressive thermal stress at interface, and leads to high interfacial parameters. Amorphous layer at interface in model composite sintered at 1550 ℃ is related to the diffusion promoted by high temperature and DC electric filed during SPS. It is inspired that the interfacial parameters could be adjusted by introducing Yb2Si2O7–Yb2SiO5 interphase with controlled composition to optimize the mechanical fuse mechanism in SiCf/SiC CMC.

total 2