Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Model composites consisting of SiC fiber and Yb2SiO5 were processed by the spark plasma sintering (SPS) method. The mechanical compatibility and chemical stability between Yb2SiO5 and SiC fiber were studied to evaluate the potential application of Yb monosilicate as the interphase of silicon carbide fiber reinforced silicon carbide ceramic matrix composite (SiCf/SiC CMC). Two kinds of interfaces, namely mechanical and chemical bonding interfaces, were achieved by adjusting sintering temperature. SiCf/Yb2SiO5 interfaces prepared at 1450 and 1500 ℃ exhibit high interface strength and debond energy, which do not satisfy the crack deflection criteria based on He–Hutchison diagram. Raman spectrum analyzation indicates that the thermal expansion mismatch between Yb2SiO5 and SiC contributes to high compressive thermal stress at interface, and leads to high interfacial parameters. Amorphous layer at interface in model composite sintered at 1550 ℃ is related to the diffusion promoted by high temperature and DC electric filed during SPS. It is inspired that the interfacial parameters could be adjusted by introducing Yb2Si2O7–Yb2SiO5 interphase with controlled composition to optimize the mechanical fuse mechanism in SiCf/SiC CMC.
1319
Views
198
Downloads
30
Crossref
30
Web of Science
31
Scopus
2
CSCD
Altmetrics
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.