Sort:
Open Access Research Article Issue
Seasonal acclimatization and temperature acclimation in small passerine birds is achieved via metabolic adjustments
Avian Research 2023, 14 (1): 100084
Published: 13 February 2023
Downloads:18

Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological, physiological, and behavioral adaptions essential to survival. However, it is not clear how the capacity of an organism for temperature acclimation translates into seasonal acclimatization to maintain survival. Basal metabolic rate (BMR), evaporative water loss (EWL), and energy budget were measured in the Chinese Hwamei (Garrulax canorus) following winter and summer acclimatization, and in those acclimatized to 15 ​℃ (cold) and 35 ​℃ (warm) under laboratory conditions for 28 days. In addition to the above indicators, internal organ masses, as well as state 4 respiration and cytochrome c oxidase (COX) activity were also measured for the liver, skeletal muscle, heart, and kidney. Both winter-acclimatized and cold-acclimated birds exhibited significantly higher BMR, EWL, and energy budget, as well as organ masses, state 4 respiration, and COX activity compared with the summer-acclimatized and warm-acclimated birds. This indicated that the Chinese Hwamei could adapt to seasonal or just temperature changes through some physiological and biochemical thermogenic adjustments, which would be beneficial to cope with natural environmental changes. A general linear model showed that body mass, BMR, GEI, state 4 respiration in the liver and kidney, and COX activity in the skeletal muscle, liver, and kidney were significantly affected by temperature and acclimation. A positive correlation was observed between BMR and each of the other parameters (body mass, EWL, energy budget, heart dry mass, kidney dry mass, state 4 respiration) in the muscle, heart, and kidney and also between BMR and COX activity in the muscle and kidney. The results suggested that similar to seasonal acclimatization, Chinese Hwameis subjected to temperature acclimation also exhibited significant differences in metabolism-related physiological and biochemical parameters, depending on the temperature. The data also supported the prediction that metabolic adjustment might be the primary means by which small birds meet the energetic challenges triggered by cold conditions.

Open Access Research Issue
Antioxidant defense mechanisms and fatty acid catabolism in Red-billed Leiothrix (Leiothrix lutea) exposed to high temperatures
Avian Research 2022, 13 (1): 100013
Published: 24 February 2022
Downloads:66

Extreme hot weather is occurring more frequently due to global warming, posing a significant threat to species survival. Birds in particular are more likely to overheat in hot weather because they have a higher body temperature. This study used a heat stress model to investigate the antioxidant defense mechanisms and changes in fatty acid catabolism in Red-billed Leiothrix (Leiothrix lutea) to gain an understanding of how birds adapt to high temperatures. The birds were divided into five groups: a control group (30 ℃ for 0 days), 1 D group (40 ℃ for 1 day), 3 D group (40 ℃ for 3 days), 14 D group (40 ℃ for 14 days) and recovery group (40 ℃ for 14 days, then 30 ℃ for 14 days). Our results indicated that when Red-billed Leiothrix are subjected to heat stress, malondialdehyde (MDA) content in the liver significantly increased, as did the enzyme activities of catalase (CAT), glutathione–SH–peroxidase (GSH-PX) and total antioxidant capacity (T-AOC) in the liver. Furthermore, there was a significant increase in heat shock protein 70 (HSP70) expression in the liver, while avian uncoupling protein (avUCP) expression in muscle was significantly reduced. Additionally, there was a significant reduction in fatty acid catabolism enzyme activity such as 3-hydroxyacyl-CoAdehydrogenase (HOAD) activity in the heart, and carnitine palmitoyl transferase 1 (CPT-1) and citrate synthase (CS) activity in the heart and liver. Furthermore, fatty acid translocase (FAT/CD36) in the heart, heart-type fatty acid binding protein (H-FABP) and fatty acid binding protein (FABP-pm) in the liver and heart were also significantly decreased. These changes reverted after treatment, but not to the same level as the control group. Our results indicated that when Red-billed Leiothrix are exposed to heat stress their internal antioxidant defense system is activated to counteract the damage caused by high temperatures. However, even with high antioxidant levels, prolonged high temperature exposure still caused some degree of oxidative damage possibly requiring a longer recovery time. Additionally, Red-billed Leiothrix may be able to resist heat stress by reducing fatty acid transport and catabolism.

Open Access Research Issue
Thermogenic responses in Eurasian Tree Sparrow (Passer montanus) to seasonal acclimatization and temperature-photoperiod acclimation
Avian Research 2020, 11 (1): 35
Published: 13 September 2020
Downloads:21
Background

Small birds in temperate habitats must either migrate, or adjust aspects of their morphology, physiology and behavior to cope with seasonal change in temperature and photoperiod. It is, however, difficult to accurately measure how seasonal changes in temperature and photoperiod affect physiological processes such as basal metabolic rate (BMR) and metabolic activity. To address this problem, we collected data in each month of the year on body mass (Mb) and BMR, and conducted a series of experiments to determine the effect of temperature and photoperiod on Mb, BMR and physiological markers of metabolic activity, in the Eurasian Tree Sparrow (Passer montanus).

Methods

In one experiment, we measured monthly change in Mb and BMR in a captive group of birds over a year. In another experiment, we examined the effects of acclimating birds to two different temperatures, 10 and 30 ℃, and a long and a short photoperiod (16 h light:8 h dark and 8 h light:16 h dark, respectively) for 4 weeks.

Results

We found that these treatments induced sparrows to adjust their Mb and metabolic rate processes. Acclimation to 30 ℃ for 4 weeks significantly decreased sparrows' Mb, BMR, and energy intake, including both gross energy intake and digestible energy intake, compared to birds acclimated to 10 ℃. The dry mass of the liver, kidneys and digestive tract of birds acclimated to 30 ℃ also significantly decreased, although their heart and skeletal muscle mass did not change significantly relative to those acclimated to 10 ℃. Birds acclimated to 30 ℃ also had lower mitochondrial state-4 respiration (S4R) and cytochrome c oxidase (COX) activity in their liver and skeletal muscle, compared to those acclimated to 10 ℃. Birds acclimated to the long photoperiod also had lower mitochondrial S4R and COX activity in their liver, compared to those acclimated to the short photoperiod.

Conclusions

These results illustrate the changes in morphology, physiology, and enzyme activity induced by seasonal change in temperature and photoperiod in a small temperate passerine. Both temperature and photoperiod probably have a strong effect on seasonal variation in metabolic heat production in small birds in temperate regions. The effect of temperature is, however, stronger than that of photoperiod.

Open Access Research Issue
The role of temperature as a driver of metabolic flexibility in the Red-billed Leiothrix (Leiothrix lutea)
Avian Research 2019, 10 (1): 46
Published: 10 December 2019
Downloads:38
Background

The thermoregulatory ability of animals is strongly influenced by the temperature of their environment. Acclimation to cold requires a range of physiological and morphological adjustments. In this study, we tested the hypothesis that a small passerine, the Red-billed Leiothrix (Leiothrix lutea), can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.

Methods

Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs (Leiothrix lutea) was investigated under warm (35 ℃), normal (25 ℃) or cold (15 ℃) ambient temperature conditions. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state-4 respiration and cytochrome-c oxidase (COX) activity in liver, kidney heart and pectoral muscle were measured with a Clark electrode.

Results

Birds acclimated to an ambient temperature of 15 ℃ for 4 weeks significantly increased their basal metabolic rate (BMR) compared to a control group kept at 25 ℃. Birds acclimated to 35 ℃ decreased their BMR, gross energy intake (GEI) and digestible energy intake (DEI). Furthermore, birds acclimated to 15 ℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase (COX) activity in their liver and pectoral muscle, compared to the 25 ℃ control group. Birds acclimated to 35 ℃ also displayed lower state-4 respiration and COX activity in the liver, heart and pectoral muscles, compared to those kept at 25 ℃. There was a positive correlation between BMR and state-4 respiration, and between BMR and COX activity, in all of the above organs except the liver and heart.

Conclusions

Our study illustrates that the morphological, physiological, and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix, and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.

Open Access Research Issue
Food restriction decreases BMR, body and organ mass, and cellular energetics, in the Chinese Bulbul (Pycnonotus sinensis)
Avian Research 2018, 9 (1): 39
Published: 21 November 2018
Downloads:19
Background

Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few studies have focused on the thermogenesis and its effects on the body condition of birds. In this study, we examined the effects of food restriction on the body mass, basal metabolic rate (BMR) and body composition, and several physiological, biochemical and molecular markers potentially related to thermogenesis, in the Chinese Bulbul (Pycnonotus sinensis).

Methods

Birds in the control group were provided with food ad libitum whereas those in the food restriction group were provided with one-half of the usual quantity of food for 12 days. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state 4 respiration and cytochrome c oxidase (COX) activity in the liver and pectoral muscle were measured with a Clark electrode. Avian uncoupling protein (avUCP) mRNA expression was determined in pectorals muscle with quantitative Real-time PCR.

Results

Chinese Bulbuls in food restriction group decreased in body mass, BMR and internal organ (heart, kidneys, small intestine and total digestive tract) mass compared with the control group over the 12-day period of food restriction. Bulbuls in the food restriction group also had lower levels of state-4 respiration, COX activity in the liver and muscle, and mitochondrial avUCP gene expression in muscle compared to the control group. BMR was positively correlated with body mass, state 4 respiration in the liver and COX activity in the muscle.

Conclusions

Our data indicate that Chinese Bulbuls not only sustain food shortage through simple passive mechanisms, such as reducing body and organ mass and energy expenditure, but also by reducing energetic metabolism in the liver and muscle.

Open Access Research Issue
Seasonal phenotypic flexibility in body mass, basal thermogenesis, and tissue oxidative capacity in the male Silky Starling (Sturnus sericeus)
Avian Research 2017, 8 (1): 25
Published: 23 September 2017
Downloads:23
Background

Acclimatization to winter conditions is an essential prerequisite for the survival of small birds in the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal physiological and behavioral acclimatization in many passerines. Seasonal trends in metabolic parameters are well known in avian populations from temperate environments; however, the physiological and biochemical mechanisms underlying these trends are incompletely understood. In this study, we used an integrative approach to measure variation in the thermogenic properties of the male Silky Starling (Sturnus sericeus) at different levels or organization, from the whole organism to the biochemical. We measured body mass (Mb), basal metabolic rate (BMR), energy budget, the mass of selected internal organs, state 4 respiration and cytochrome c oxidase (COX) activity in the heart, liver and muscle.

Methods

Oxygen consumption was measured using an open-circuit respirometry system. The energy intake of the birds were then determined using an oxygen bomb calorimeter. Mitochondrial state 4 respiration and COX activity in heart, liver and pectoral muscle were measured with a Clark electrode.

Results

The results suggest that acclimatization to winter conditions caused significant change in each of the measured variables, specifically, increases in Mb, organ mass, BMR, energy intake and cellular enzyme activity. Furthermore, BMR was positively correlated with body mass, energy intake, the mass of selected internal organs, state 4 respiration in the heart, liver and muscle, and COX activity in the heart and muscle.

Conclusions

These results suggest that the male Silky Starlingos enhanced basal thermogenesis under winter conditions is achieved by making a suite of adjustments from the whole organism to the biochemical level, and provide further evidence to support the notion that small birds have high phenotypic plasticity with respect to seasonal changes.

Open Access Research Issue
Relationships between interspecific differences in the mass of internal organs, biochemical markers of metabolic activity, and the thermogenic properties of three small passerines
Avian Research 2016, 7 (1): 11
Published: 07 June 2016
Downloads:22
Background

The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate (BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms. BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear. In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines: wild Bramblings (Fringilla montifringilla),Little Buntings (Emberiza pusilla) and Eurasian Tree Sparrows (Passer montanus),caught in Wenzhou,southeastern China.

Methods

Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state-4 respiration and cytochrome c oxidase (COX) activity in liver and pectoral muscle were measured with a Clark electrode.

Results

Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings. Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.

Conclusions

Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.

Open Access Research Issue
Daily variation in body mass and thermoregulation in male Hwamei (Garrulax canorus) at different seasons
Avian Research 2015, 6 (1): 4
Published: 15 March 2015
Downloads:8
Background

Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body temperature and basal metabolic rate (BMR) for seasonally acclimatized Hwameis (Garrulax canorus).

Methods

Body mass was determined with a Sartorius balance. Metabolic rates of Hwameis were measured with an open-circuit respirometry system.

Results

Body masses varied with time of day and were higher in daytime for Hwameis in both summer and winter, and body masses in winter were higher compared to that in summer. Body temperatures of Hwameis were higher in daytime, and the summer acclimatized birds had significantly higher body temperatures compared to the winter acclimatized birds. BMRs of Hwameis were significantly higher during the daytime compared to the nighttime of the daily cycle in both summer and winter, and Hwameis in winter had significantly higher BMRs than that in summer.

Conclusions

This result showed that Hwameis rely mostly on metabolic capacity to maintain their body temperature in cold weathers, and Hwameis exhibited daily and seasonal flexibility in morphology and physiology which is important under changing environmental conditions.

Open Access Research Issue
Seasonal variation in body mass and energy budget in Chinese bulbuls(pycnonotus sinensis)
Avian Research 2014, 5 (1): 4
Published: 23 September 2014
Downloads:15
Background

Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake (GEI), digestible energy intake (DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls (Pycnonotus sinensis) caught in the wild at Wenzhou, China.

Methods

Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.

Results

Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter. The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.

Conclusions

This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.

total 9