Sort:
Research Article Issue
CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy
Nano Research 2021, 14 (11): 4038-4045
Published: 22 February 2021
Downloads:22

Perovskite quantum dots (PQDs) require ligands on their surfaces to passivate defects and prevent aggregation. However, the ligands construct the interface relationship between the PQDs, which may seriously hinder the carrier transport. Hence, we propose a molecular engineering strategy of using 3, 4-ethylenedioxythiophene (EDOT) to perfectly solve this problem, benefiting from its high conjugation and passivation ability to CsPbBr3 PQDs. Furthermore, EDOT on the surface of PQDs can be in-situ polymerized under the photocurrent of the photodetector, thus interconnecting the PQDs which enhanced the performance of the photodetectors up to 178% of its initial performance. We have thoroughly investigated the electropolymerization process of EDOT and its passivation effect on PQDs. The simple lateral photodetector based on EDOT PQDs exhibits a high responsivity of 11.96 A/W, which is 104 times higher than that of oleic acid caped PQDs. Due to the protection of poly(3, 4-ethylenedioxythiophene) (PEDOT), the photodetector prepared from EDOT PQDs exhibited very high stability, retaining 94% of its performance after six months in air. This strategy provides a solution for the application of PQDs in high performances and stable optoelectronic devices.

total 1