Journal Home > Volume 14 , Issue 11

Perovskite quantum dots (PQDs) require ligands on their surfaces to passivate defects and prevent aggregation. However, the ligands construct the interface relationship between the PQDs, which may seriously hinder the carrier transport. Hence, we propose a molecular engineering strategy of using 3, 4-ethylenedioxythiophene (EDOT) to perfectly solve this problem, benefiting from its high conjugation and passivation ability to CsPbBr3 PQDs. Furthermore, EDOT on the surface of PQDs can be in-situ polymerized under the photocurrent of the photodetector, thus interconnecting the PQDs which enhanced the performance of the photodetectors up to 178% of its initial performance. We have thoroughly investigated the electropolymerization process of EDOT and its passivation effect on PQDs. The simple lateral photodetector based on EDOT PQDs exhibits a high responsivity of 11.96 A/W, which is 104 times higher than that of oleic acid caped PQDs. Due to the protection of poly(3, 4-ethylenedioxythiophene) (PEDOT), the photodetector prepared from EDOT PQDs exhibited very high stability, retaining 94% of its performance after six months in air. This strategy provides a solution for the application of PQDs in high performances and stable optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy

Show Author's information Wei Yan1Jianhua Shen1( )Yihua Zhu1( )Yiqing Gong1Jingrun Zhu1Zheng Wen2Chunzhong Li3( )
Shanghai Engineering Research Centre of Hierarchical NanomaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Centre for Materiobiology and Dynamic ChemistrySchool of Materials Science and Engineering East China University of Science and TechnologyShanghai 200237 China
Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow UniversitySuzhou 215123 China
Shanghai Engineering Research Centre of Hierarchical NanomaterialsSchool of Chemical Engineering East China University of Science and TechnologyShanghai 200237 China

Abstract

Perovskite quantum dots (PQDs) require ligands on their surfaces to passivate defects and prevent aggregation. However, the ligands construct the interface relationship between the PQDs, which may seriously hinder the carrier transport. Hence, we propose a molecular engineering strategy of using 3, 4-ethylenedioxythiophene (EDOT) to perfectly solve this problem, benefiting from its high conjugation and passivation ability to CsPbBr3 PQDs. Furthermore, EDOT on the surface of PQDs can be in-situ polymerized under the photocurrent of the photodetector, thus interconnecting the PQDs which enhanced the performance of the photodetectors up to 178% of its initial performance. We have thoroughly investigated the electropolymerization process of EDOT and its passivation effect on PQDs. The simple lateral photodetector based on EDOT PQDs exhibits a high responsivity of 11.96 A/W, which is 104 times higher than that of oleic acid caped PQDs. Due to the protection of poly(3, 4-ethylenedioxythiophene) (PEDOT), the photodetector prepared from EDOT PQDs exhibited very high stability, retaining 94% of its performance after six months in air. This strategy provides a solution for the application of PQDs in high performances and stable optoelectronic devices.

Keywords: interface, photodetector, perovskite quantum dots, 3, molecular engineering, 4-ethylenedioxythiophene

References(41)

1

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light- emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

2

Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

3

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

4

Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

5

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

6

Jia, D. L.; Chen, J. X.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 2020, 16, e2001772.

7

Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

8

Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J.; Savoie, B. M. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

9

Li, X. M.; Yu, D. J.; Chen, J.; Wang, Y.; Cao, F.; Wei, Y.; Wu, Y.; Wang, L.; Zhu, Y.; Sun, Z. G. et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 2017, 11, 2015–2023.

10

Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373– 7380.

11

Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

12

Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie, D.; Shi, G. Q. A flexible UV–Vis–NIR photodetector based on a perovskite/conjugated- polymer composite. Adv. Mater. 2016, 28, 5969–5974.

13

Bozyigit, D.; Lin, W. M. M.; Yazdani, N.; Yarema, O.; Wood, V. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nat. Commun. 2015, 6, 6180.

14

Zhang, D. Y.; Gan, L.; Cao, Y.; Wang, Q.; Qi, L. M.; Guo, X. F. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv. Mater. 2012, 24, 2715–2720.

15

Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

16

Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. Erratum: The surface science of nanocrystals. Nat. Mater. 2016, 15, 364.

17

Dai, J. F.; Xi, J.; Li, L.; Zhao, J. F.; Shi, Y. F.; Zhang, W. W.; Ran, C. X.; Jiao, B.; Hou, X.; Duan, X. H. et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew. Chem., Int. Ed. 2018, 57, 5754–5758.

18

Vickers, E. T.; Graham, T. A.; Chowdhury, A. H.; Bahrami, B.; Dreskin, B. W.; Lindley, S.; Naghadeh, S. B.; Qiao, Q. Q.; Zhang, J. Z. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands. ACS Energy Lett. 2018, 3, 2931–2939.

19

Zhou, Y.; Wang, F.; Cao, Y.; Wang, J. P.; Fang, H. H.; Loi, M. A.; Zhao, N.; Wong, C. P. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 2017, 7, 1701048.

20

Garreau, S.; Louarn, G.; Buisson, J. P.; Froyer, G.; Lefrant, S. In situ spectroelectrochemical Raman studies of poly(3, 4-ethylenedioxythiophene) (PEDT). Macromolecules 1999, 32, 6807–6812.

21

Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821.

22

Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Li, C. Z. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2017, 2, 225–232.

23

Wang, Y. W.; Varadi, L.; Trinchi, A.; Shen, J. H.; Zhu, Y. H.; Wei, G.; Li, C. Z. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 2018, 14, e1803156.

24

Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a Silica/Alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134–8138.

25

Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T. et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710–10717.

26

Vickers, E. T.; Enlow, E. E.; Delmas, W. G.; DiBenedetto, A. C.; Chowdhury, A. H.; Bahrami, B.; Dreskin, B. W.; Graham, T. A.; Hernandez, I. N.; Carter, S. A. et al. Enhancing charge carrier delocalization in perovskite quantum dot solids with energetically aligned conjugated capping ligands. ACS Energy Lett. 2020, 5, 817–825.

27

Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S. et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 2015, 12, 96–104.

28

Li, H.; Tao, L. M.; Huang, F. H.; Sun, Q.; Zhao, X. J.; Han, J. B.; Shen, Y.; Wang, M. K. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces 2017, 9, 38967–38976.

29

Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

30

Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L; Li L; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet–visible–near infrared (UV–Vis–NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

31

Lee, H. C.; Van Zeghbroeck, B. A novel high-speed silicon MSM photodetector operating at 830 nm wavelength. IEEE Electron Device Lett. 1995, 16, 175–177.

32

Laih L. H.; Chang T. C.; Chen Y. A.; Tsay W. C.; Hong J. W. Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer. IEEE Trans. Electron Devices 1998, 45, 2018–2023.

33

Tan, F. R.; Tan, H. R.; Saidaminov, M. I.; Wei, M. Y.; Liu, M. X.; Mei, A. Y.; Li, P. C.; Zhang, B. W.; Tan, C. S.; Gong, X. W. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 2019, 31, e1807435.

34

Xue, Q. F.; Liu, M. Y.; Li, Z. C.; Yan, L.; Hu, Z. C.; Zhou, J. W.; Li, W. Q.; Jiang, X. F.; Xu, B. M.; Huang, F. et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater. 2018, 28, 1707444.

35

Kang, L.; Wang, K.; Li, X. D.; Zou, B. High pressure structural investigation of benzoic acid: Raman spectroscopy and X-ray diffraction. J. Phys. Chem. C 2016, 120, 14758–14766.

36

Wang, S. X.; Zheng, H. F. Research on Raman spectra of benzoic acid during decarboxylic process. Spectrosc. Spect. Anal. 2009, 29, 3312–3314.

37

Nitta, K.; Tsumaki, M.; Kawano, T.; Terashima, K.; Ito, T. Printing PEDOT from EDOT via plasma-assisted inkjet printing. J. Phys. D: Appl. Phys. 2019, 52, 315202.

38

Cao, F. R.; Tian, W; Gu, B. K.; Ma, Y. L.; Lu, H; Li, L. High- performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 10, 2244–2256.

39

Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H. Q.; Zhang, Y.; Golberg, D.; Zhai, T. Y. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704–712.

40

Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 2018, 140, 17760–17772.

41

Zhong, Q. X.; Cao, M. H.; Xu, Y. F.; Li, P. L.; Zhang, Y.; Hu, H. C.; Yang, D.; Xu, Y.; Wang, L.; Li, Y. Y. et al. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett. 2019, 19, 4151–4157.

File
12274_2021_3333_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2020
Revised: 11 January 2021
Accepted: 14 January 2021
Published: 22 February 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21676093, 21776092, 21978087, 21838003, and 91834301), the Shanghai Scientific and Technological Innovation Project (Nos. 19JC1410400 and 18JC1410600), Shanghai Rising-Star Program (No. 18QA1401500), the Innovation Program of Shanghai Municipal Education Commission, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutes of High Learning, Shanghai Rising-Star Program (No. 18QA1401500) and the Fundamental Research Funds for the Central Universities (No. 222201718002).

Return