Sort:
Open Access Research Article Issue
Modulating p-type doping of two-dimensional material palladium diselenide
Nano Research 2024, 17 (4): 3232-3244
Published: 24 November 2023
Abstract PDF (14.9 MB) Collect
Downloads:126

The van der Waals heterostructures have evolved as novel materials for complementing the Si-based semiconductor technologies. Group-10 noble metal dichalcogenides (e.g., PtS2, PtSe2, PdS2, and PdSe2) have been listed into two-dimensional (2D) materials toolkit to assemble van der Waals heterostructures. Among them, PdSe2 demonstrates advantages of high stability in air, high mobility, and wide tunable bandgap. However, the regulation of p-type doping of PdSe2 remains unsolved problem prior to fabricating p–n junction as a fundamental platform of semiconductor physics. Besides, a quantitative method for the controllable doping of PdSe2 is yet to be reported. In this study, the doping level of PdSe2 was correlated with the concentration of Lewis acids, for example, SnCl4, used for soaking. Considering the transfer characteristics, the threshold voltage (the gate voltage corresponding to the minimum drain current) increased after SnCl4 soaking treatment. PdSe2 transistors were soaked in SnCl4 solutions with five different concentrations. The threshold voltages from the as-obtained transfer curves were extracted for linear fitting to the threshold voltage versus doping concentration correlation equation. This study provides in-depth insights into the controllable p-type doping of PdSe2. It may also push forward the research of the regulation of conductivity behaviors of 2D materials.

Research Article Issue
Fabrication of patterned transparent conductive glass via laser metal transfer for efficient electrical heating and antibacteria
Nano Research 2024, 17 (3): 1578-1584
Published: 31 July 2023
Abstract PDF (10.4 MB) Collect
Downloads:35

Vapor deposition and three-dimensional (3D) printing technology are considered to be conventional methods to achieve patterned metal film preparation through the assistance of masks and high temperature. Therefore, there are still some challenges in fabricating metal films in template-free and normal temperature environment. In this work, we report a flexible and rapid laser metal transfer (LMT) technique for fabricating the various metal films (Cu, Ni, Sn, Al, Fe, and Ag) with different patterns without templates on arbitrary substrates (glass, polyimide (PI) films, and aluminum nitride (AlN) ceramic). Especially, the obtained transparent conductive glass displays high transmittance (more than 90%) and adjustable resistances (≈ 5 Ω). According to the Joule effect, the interface resistance between Cu particles and copper oxide coating produces the high temperature approximately 280 °C at 2 V in a short time (≈ 60 s) and remains stable at 120 °C over 12 h. At last, the multifunctional glass with Cu patterns also shows excellent bactericidal activity (≈ 95%). This work demonstrates that laser metal transfer is an exceeding effective means of fabricating the micro/nano structures with potential applications in functional devices.

Open Access Review Article Issue
Applications of MXenes in human-like sensors and actuators
Nano Research 2023, 16 (4): 5767-5795
Published: 23 November 2022
Abstract PDF (8.5 MB) Collect
Downloads:138

Human beings perceive the world through the senses of sight, hearing, smell, taste, touch, space, and balance. The first five senses are prerequisites for people to live. The sensing organs upload information to the nervous systems, including the brain, for interpreting the surrounding environment. Then, the brain sends commands to muscles reflexively to react to stimuli, including light, gas, chemicals, sound, and pressure. MXene, as an emerging two-dimensional material, has been intensively adopted in the applications of various sensors and actuators. In this review, we update the sensors to mimic five primary senses and actuators for stimulating muscles, which employ MXene-based film, membrane, and composite with other functional materials. First, a brief introduction is delivered for the structure, properties, and synthesis methods of MXenes. Then, we feed the readers the recent reports on the MXene-derived image sensors as artificial retinas, gas sensors, chemical biosensors, acoustic devices, and tactile sensors for electronic skin. Besides, the actuators of MXene-based composite are introduced. Eventually, future opportunities are given to MXene research based on the requirements of artificial intelligence and humanoid robot, which may induce prospects in accompanying healthcare and biomedical engineering applications.

Research Article Issue
Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media
Nano Research 2023, 16 (2): 2085-2093
Published: 02 September 2022
Abstract PDF (4.1 MB) Collect
Downloads:69

Transition metal nitride/carbide (TMN/C) have been actively explored as low-cost hydrogen evolution reaction (HER) electrocatalysts owing to their Pt-like physical and chemical properties. Unfortunately, pure TMN/C suffers from strong hydrogen adsorption and lacks active centers for water dissociation. Herein, we developed a switchable WO3-based in situ gas–solid reaction for preparing sophisticated Fe-N doped WC and Fe-C doped WN nanoarrays. Interestingly, the switch of codoping and phase can be effectively manipulated by regulating the amount of ferrocene. Resultant Fe-C-WN and Fe-N-WC exhibit robust electrocatalytic performance for HER in alkaline and acid electrolytes, respectively. The collective collaboration of morphological, phase and electronic effects are suggested to be responsible for the superior HER activity. The smallest |ΔGH*| value of Fe-N-WC indicates preferable hydrogen-evolving kinetics on the Fe-N-WC surface for HER under acid condition, while Fe-C-WN is suggested to be beneficial to the adsorption and dissociation of H2O for HER in alkaline electrolyte.

Open Access Review Article Issue
Emerging Internet of Things driven carbon nanotubes-based devices
Nano Research 2022, 15 (5): 4613-4637
Published: 13 January 2022
Abstract PDF (17.2 MB) Collect
Downloads:145

Carbon nanotubes (CNTs) have attracted great attentions in the field of electronics, sensors, healthcare, and energy conversion. Such emerging applications have driven the carbon nanotube research in a rapid fashion. Indeed, the structure control over CNTs has inspired an intensive research vortex due to the high promises in electronic and optical device applications. Here, this in-depth review is anticipated to provide insights into the controllable synthesis and applications of high-quality CNTs. First, the general synthesis and post-purification of CNTs are briefly discussed. Then, the state-of-the-art electronic device applications are discussed, including field-effect transistors, gas sensors, DNA biosensors, and pressure gauges. Besides, the optical sensors are delivered based on the photoluminescence. In addition, energy applications of CNTs are discussed such as thermoelectric energy generators. Eventually, future opportunities are proposed for the Internet of Things (IoT) oriented sensors, data processing, and artificial intelligence.

Research Article Issue
X-ray imager of 26-μm resolution achieved by perovskite assembly
Nano Research 2022, 15 (3): 2399-2404
Published: 09 September 2021
Abstract PDF (28.8 MB) Collect
Downloads:47

Spatial resolution is an important criterion to evaluate the performance of a scintillation screen for X-ray imaging. Perovskite-based X-ray screen, usually made of powders or polycrystalline films, suffers from low spatial resolution (~ 200 μm) due to the large thickness of scintillation layer despite of their compelling sensitivity to X-ray dose. In this work, a concentrated colloid of CsPbBr3 nanosheets was synthesized via a co-precipitation method at ambient condition. By drop casting, smooth scintillation screens of varied thickness were formed through self-assembly, which exhibited both high internal and external photoluminescence quantum yield (PL QY) (84.5% and 75.1%, respectively). The screen-based X-ray detector showed a high sensitivity down to 27 nGy/s, two orders of magnitude lower than the regular dose for medical diagnostics. Importantly, the screen of optimal thickness of 15 μm showcased an unprecedented spatial resolution (26 μm) when used for X-ray radiography, representing one order of magnitude improvement in perovskite community.

Research Article Issue
Intracellular pH-responsive iron–catechin nanoparticles with osteogenic/anti-adipogenic and immunomodulatory effects for efficient bone repair
Nano Research 2022, 15 (2): 1153-1161
Published: 28 July 2021
Abstract PDF (42.2 MB) Collect
Downloads:95

Osteoimmunomodulation was identified as a new and important strategy to enhance osteogenic differentiation together with other osteogenic approaches. However, approaches regulating osteogenic differentiation and macrophage polarization to remodel an osteoinductive microenvironment are separate and complicated. Therefore, the design and synthesis of one biomaterial that couples the osteogenic performance and immunomodulatory ability is a major challenge for efficient bone repair. In this study, self-assembled iron–catechin nanoparticles (Fe–cat NPs) were designed based on the coordinated reaction between iron ions and catechin and synthesized via a facile one-pot strategy. Interestingly, Fe–cat NPs show intracellular pH-responsive disassembly and release catechin molecules under the low pH of lysosomes after endocytosis. This strategy delivers catechin intracellularly and then enhances the osteogenic differentiation while inhibits the adipogenic differentiation of human adipose-derived stem cells (hADSCs). More importantly, Fe–cat NPs remodel the osteogenic immune microenvironment by resisting inflammation and promoting M2 polarization of macrophages. As a promising metal–organic nanodrug, the intracellular pH-responsive Fe–cat NPs significantly enhance the therapeutic effect of bone regneration by orchestrating osteogenic differentiation and immunomodulation, which may have great potential in bone tissue engineering.

Research Article Issue
Multi-interface collaboration of graphene cross-linked NiS-NiS2- Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte
Nano Research 2021, 14 (12): 4857-4864
Published: 17 April 2021
Abstract PDF (14.2 MB) Collect
Downloads:47

Electrocatalytic hydrogen production in alkaline media is extensively adopted in industry. Unfortunately, further performance improvement is severely impeded by the retarded kinetics, which requires the fine regulation of water dissociation, hydrogen recombination, and hydroxyl desorption. Herein, we develop a multi-interface engineering strategy to make an elaborate balance for the alkaline hydrogen evolution reaction (HER) kinetics. The graphene cross-linked three-phase nickel sulfide (NiS-NiS2-Ni3S4) polymorph foam (G-NNNF) was constructed through hydrothermal sulfidation of graphene wrapped nickel foam as a three-dimensional (3D) scaffold template. The G-NNNF exhibits superior catalytic activity toward HER in alkaline electrolyte, which only requires an overpotential of 68 mV to drive 10 mA·cm−2 and is better than most of the recently reported metal sulfides catalysts. Density functional theory (DFT) calculations verify the interfaces between nickel sulfides (NiS/NiS2/Ni3S4) and cross-linked graphene can endow the electrocatalyst with preferable hydrogen adsorption as well as metallic nature. In addition, the electron transfer from Ni3S4/NiS2 to NiS results in the electron accumulation on NiS and the hole accumulation on Ni3S4/NiS2, respectively. The electron accumulation on NiS favors the optimization of the H* adsorption, whereas the hole accumulation on Ni3S4 is beneficial for the adsorption of H2O. The work about multi-interface collaboration pushes forward the frontier of excellent polymorph catalysts design.

Research Article Issue
A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells
Nano Research 2017, 10 (3): 776-784
Published: 26 November 2016
Abstract PDF (2.3 MB) Collect
Downloads:17

Nanomaterials show promising opportunities to address clinical problems (such as insufficient capture of circulating tumor cells; CTCs) via the high surface area-to-volume ratio and high affinity for biological cells. However, how to apply these nanomaterials as a nano-bio interface in a microfluidic device for efficient CTC capture with high specificity remains a challenge. In the present work, we first found that a titanium dioxide (TiO2) nanorod array that can be conveniently prepared on multiple kinds of substrates has high affinity for tumor cells. Then, the TiO2 nanorod array was vertically grown on the surface of a microchannel with hexagonally patterned Si micropillars via a hydrothermal reaction, forming a new kind of a micro-nano 3D hierarchically structured microfluidic device. The vertically grown TiO2 nanorod array was used as a sensitive nano-bio interface of this 3D hierarchically structured microfluidic device, which showed high efficiency of CTC capture (76.7% ± 7.1%) in an artificial whole-blood sample.

Total 9