Journal Home > Volume 16 , Issue 2

Transition metal nitride/carbide (TMN/C) have been actively explored as low-cost hydrogen evolution reaction (HER) electrocatalysts owing to their Pt-like physical and chemical properties. Unfortunately, pure TMN/C suffers from strong hydrogen adsorption and lacks active centers for water dissociation. Herein, we developed a switchable WO3-based in situ gas–solid reaction for preparing sophisticated Fe-N doped WC and Fe-C doped WN nanoarrays. Interestingly, the switch of codoping and phase can be effectively manipulated by regulating the amount of ferrocene. Resultant Fe-C-WN and Fe-N-WC exhibit robust electrocatalytic performance for HER in alkaline and acid electrolytes, respectively. The collective collaboration of morphological, phase and electronic effects are suggested to be responsible for the superior HER activity. The smallest |ΔGH*| value of Fe-N-WC indicates preferable hydrogen-evolving kinetics on the Fe-N-WC surface for HER under acid condition, while Fe-C-WN is suggested to be beneficial to the adsorption and dissociation of H2O for HER in alkaline electrolyte.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media

Show Author's information Jian Zhou1,§Fanfan Wang2,§Haiqing Wang1,§( )Shuxian Hu2( )Weijia Zhou1Hong Liu1,3( )
Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

§ Jian Zhou, Fanfan Wang, and Haiqing Wang contributed equally to this work.

Abstract

Transition metal nitride/carbide (TMN/C) have been actively explored as low-cost hydrogen evolution reaction (HER) electrocatalysts owing to their Pt-like physical and chemical properties. Unfortunately, pure TMN/C suffers from strong hydrogen adsorption and lacks active centers for water dissociation. Herein, we developed a switchable WO3-based in situ gas–solid reaction for preparing sophisticated Fe-N doped WC and Fe-C doped WN nanoarrays. Interestingly, the switch of codoping and phase can be effectively manipulated by regulating the amount of ferrocene. Resultant Fe-C-WN and Fe-N-WC exhibit robust electrocatalytic performance for HER in alkaline and acid electrolytes, respectively. The collective collaboration of morphological, phase and electronic effects are suggested to be responsible for the superior HER activity. The smallest |ΔGH*| value of Fe-N-WC indicates preferable hydrogen-evolving kinetics on the Fe-N-WC surface for HER under acid condition, while Fe-C-WN is suggested to be beneficial to the adsorption and dissociation of H2O for HER in alkaline electrolyte.

Keywords: hydrogen evolution, gas–solid reaction, tungsten nitride/carbide, codoping, phase regulation

References(51)

[1]

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

[2]

Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

[3]

Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

[4]

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.

[5]

Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

[6]

Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/p-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

[7]

Niu, S. W.; Fang, Y. Y.; Rao, D. W.; Liang, G. J.; Li, S. Y.; Cai, J. Y.; Liu, B.; Li, J. M.; Wang, G. M. Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 2022, 18, 2106870.

[8]

Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

[9]

Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

[10]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[11]

Li, X. P.; Huang, C.; Han, W. K.; Ouyang, T.; Liu, Z. Q. Transition metal-based electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2597–2616.

[12]

Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Cheong, W. C. M.; Sun, K. A.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

[13]

Ang, E. H.; Dinh, K. N.; Sun, X. L.; Huang, Y.; Yang, J.; Dong, Z. L.; Dong, X. C.; Huang, W.; Wang, Z. G.; Zhang, H. et al. Highly efficient and stable hydrogen production in all pH range by two-dimensional structured metal-doped tungsten semicarbides. Research 2019, 2019, 4029516.

[14]

Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

[15]

Zhang, B. W.; Li, C. J.; Hu, J.; Peng, D. D.; Huang, K.; Wu, J. S.; Chen, Z.; Huang, Y. Z. Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction. Nano Res. 2021, 14, 4073–4078.

[16]

Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

[17]

Wang, H. Q.; Xu, X. B.; Ni, B.; Li, H. Y.; Bian, W.; Wang, X. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale 2017, 9, 15895–15900.

[18]

Kundu, A.; Ma, J.; Carrete, J.; Madsen, G. K. H.; Li, W. Anomalously large lattice thermal conductivity in metallic tungsten carbide and its origin in the electronic structure. Mater. Today Phys. 2020, 13, 100214.

[19]

Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

[20]

Lv, C. C.; Wang, X. B.; Gao, L. J.; Wang, A. J.; Wang, S. F.; Wang, R. N.; Ning, X. K.; Li, Y. G.; Boukhvalov, D. W.; Huang, Z. P. et al. Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 2020, 10, 13323–13333.

[21]

Li, H.; Hu, M. H.; Zhang, L. Y.; Huo, L. L.; Jing, P.; Liu, B. C.; Gao, R.; Zhang, J.; Liu, B. Hybridization of bimetallic molybdenum-tungsten carbide with nitrogen-doped carbon: A rational design of super active porous composite nanowires with tailored electronic structure for boosting hydrogen evolution catalysis. Adv. Funct. Mater. 2020, 30, 2003198.

[22]
ZhangS. G.GaoG. H.ZhuH.CaiL. J.JiangX. D.LuS. L.DuanF.DongW. F.ChaiY.DuM. L. In situ interfacial engineering of nickel tungsten carbide janus structures for highly efficient overall water splittingSci. Bull.20206564065010.1016/j.scib.2020.02.003

Zhang, S. G.; Gao, G. H.; Zhu, H.; Cai, L. J.; Jiang, X. D.; Lu, S. L.; Duan, F.; Dong, W. F.; Chai, Y.; Du, M. L. In situ interfacial engineering of nickel tungsten carbide janus structures for highly efficient overall water splitting. Sci. Bull. 2020, 65, 640–650.

[23]

Ma, M. J.; Xu, J. H.; Wang, H. Q.; Zhang, X. W.; Hu, S. X.; Zhou, W. J.; Liu, H. Multi-interfacial engineering of hierarchical CoNi2S4/WS2/Co9S8 hybrid frameworks for robust all-pH electrocatalytic hydrogen evolution. Appl. Catal. B:Environ. 2021, 297, 120455.

[24]

Wang, H. Q.; Ma, M. J.; Li, J. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Manipulating all-pH hydrogen evolution kinetics on metal sulfides through one-pot simultaneously derived multi-interface engineering and phosphorus doping. J. Mater. Chem. A 2021, 9, 25539–25546.

[25]

Zhang, Z. F.; Wang, H. Q.; Ma, M. J.; Liu, H. L.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Integrating NiMoO wafer as a heterogeneous ‘turbo’ for engineering robust Ru-based electrocatalyst for overall water splitting. Chem. Eng. J. 2021, 420, 127686.

[26]

Wang, H. Q.; Zhang, X. W.; Wang, J. G.; Liu, H. L.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Puffing quaternary FexCoyNi1–xyP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Sci. China Mater. 2020, 63, 1054–1064.

[27]

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

[28]

Li, Y. H.; Wang, M. L.; Yi, Y. Y.; Lu, C.; Dou, S. X.; Sun, J. Y. Metallic transition metal dichalcogenides of group VIB: Preparation, stabilization, and energy applications. Small 2021, 17, 2005573.

[29]

Ma, M. J.; Feng, Z. C.; Zhang, X. W.; Sun, C. Y.; Wang, H. Q.; Zhou, W. J.; Liu, H. Progress in the preparation and application of electrocatalysts based on microorganisms as intelligent templates. Acta Phys. Chim. Sin. 2022, 38, 2106003.

[30]

Liao, L. L.; Cheng, C.; Zhou, H. Q.; Qi, Y.; Li, D. Y.; Cai, F. M.; Yu, B.; Long, R.; Yu, F. Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 2022, 22, 100589.

[31]

Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal–organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.

[32]

Fu, H. C.; Wang, X. H.; Chen, X. H.; Zhang, Q.; Li, N. B.; Luo, H. Q. Interfacial engineering of Ni(OH)2 on W2C for remarkable alkaline hydrogen production. Appl. Catal. B:Environ. 2022, 301, 120818.

[33]

Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ. Angew. Chem., Int. Ed. 2013, 52, 13638–13641.

[34]

Chen, Y. D.; Zheng, Y.; Yue, X.; Huang, S. M. Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable non-precious metal electrocatalysts. Int. J. Hydrogen Energy 2020, 45, 8695–8702.

[35]

Wu, A. P.; Gu, Y.; Yang, B. R.; Wu, H.; Yan, H. J.; Jiao, Y. Q.; Wang, D. X.; Tian, C. G.; Fu, H. G. Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 22938–22946.

[36]

Xu, X. B.; Nosheen, F.; Wang, X. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal–organic framework for electrocatalytic hydrogen evolution reaction. Chem. Mater. 2016, 28, 6313–6320.

[37]

Li, Y. C.; Xia, L. L.; Fan, Y. M.; Wang, Q. Y.; Hu, M. Recent advances in autonomous synthesis of materials. ChemPhysMater 2022, 1, 77–85.

[38]

Zhang, S. J.; Qin, Z. L.; Hou, Z. G.; Ye, J. J.; Xu, Z. B.; Qian, Y. T. Large-scale preparation of black phosphorus by molten salt method for energy storage. ChemPhysMater 2022, 1, 1–5.

[39]

Cui, Y. L. S.; Tan, X.; Xiao, K. F.; Zhao, S. L.; Bedford, N. M.; Liu, Y. F.; Wang, Z. C.; Wu, K. H.; Pan, J.; Saputera, W. H. et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568.

[40]

Ma, F. H.; Wang, S. H.; Gong, X. Q.; Liu, X. L.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K. et al. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl. Catal. B:Environ. 2022, 307, 121198.

[41]

Zhang, Q.; Luo, F.; Long, X.; Yu, X. X.; Qu, K. G.; Yang, Z. H. N, P doped carbon nanotubes confined WN-Ni Mott–Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc–air batteries. Appl. Catal. B:Environ. 2021, 298, 120511.

[42]

Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.

[43]

Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

[44]

Emin, S.; Altinkaya, C.; Semerci, A.; Okuyucu, H.; Yildiz, A.; Stefanov, P. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution. Appl. Catal. B:Environ. 2018, 236, 147–153.

[45]

Zhao, B. H.; Sun, M. Y.; Chen, F. P.; Shi, Y. M.; Yu, Y. F.; Li, X. G.; Zhang, B. Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2 to C2+ hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 4496–4500.

[46]

Jin, Y.; Zhang, Z.; Yang, H.; Wang, P. T.; Shen, C. Q.; Cheng, T.; Huang, X. Q.; Shao, Q. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires. SmartMat 2022, 3, 130–141.

[47]

Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

[48]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[49]

Nasiri, M. B.; Iranshahi, F. Comprehensive unified model and simulation approach for microstructure evolution. ChemPhysMater 2022, 1, 133–147.

[50]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy, 2022, 1, e9120017.

[51]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy, 2022, 1, e9120022.

File
12274_2022_4901_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 June 2022
Revised: 11 August 2022
Accepted: 13 August 2022
Published: 02 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2019BB025), the National Natural Science Foundation of China (Nos. 21976014 and U1930402), The Fundamental Research Funds for the Central Universities (FRF-TP-20-11B and FRF-BR-20-02B), and the generous computer time from TianHe2-JK Supercomputer Center.

Return