Sort:
Research Article Issue
Enhanced singlet oxygen generation by hybrid Mn-doped nanocomposites for selective photo-oxidation of benzylic alcohols
Nano Research 2020, 13 (6): 1668-1676
Published: 11 May 2020
Downloads:18

Transition-metal ions doped nanocrystals (NCs), specifically Mn-doped NCs, hold great potential in the field of photocatalysis, especially, to improve photocatalytic performance for singlet oxygen (1O2) generation. Here, we report the design of a novel Mn-doped NC-based nanocomposites, specifically, silica-coated Mn-doped CdS/ZnS NCs decorated with Pt NCs (denoted as Mn-NCs@SiO2-Pt), which enhance photocatalytic 1O2 generation. Owing to the long-lived Mn excited state (on the order of ms), the energy-transfer between Mn-NCs and molecular oxygen is facilitated with the assistance of the Pt NCs adhered to the Mn-NC@SiO2 surface. Therefore, the Mn-NCs@SiO2-Pt composites, integrate the advantages of Mn-doped NCs, a protective silica layer, and Pt NCs to exhibit excellent catalytic activity and selectivity for the selective oxidation of primary benzylic alcohols to aldehydes through an 1O2 engaged oxidation process under visible-light irradiation. This work paves the way for enhancing catalytic performance via facilitated energy transfer relaxation by utilizing the long-lived excited-state of Mn2+ dopant ions in nanocomposites.

Research Article Issue
Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications
Nano Research 2017, 10 (8): 2699-2711
Published: 29 April 2017
Downloads:15

Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)–two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent-mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type Ⅱ band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalytic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.

total 2