Journal Home > Volume 10 , Issue 8

Nanomaterial shapes can have profound effects on material properties, and therefore offer an efficient way to improve the performances of designed materials and devices. The rational fabrication of multidimensional architectures such as one dimensional (1D)–two dimensional (2D) hybrid nanomaterials can integrate the merits of individual components and provide enhanced functionality. However, it is still very challenging to fabricate 1D/2D architectures because of the different growth mechanisms of the nanostructures. Here, we present a new solvent-mediated, surface reaction-driven growth route for synthesis of CdS nanowire (NW)/CdIn2S4 nanosheet (NS) 1D/2D architectures. The as-obtained CdS NW/CdIn2S4 NS structures exhibit much higher visible-light-responsive photocatalytic activities for water splitting than the individual components. The CdS NW/CdIn2S4 NS heterostructure was further fabricated into photoelectrodes, which achieved a considerable photocurrent density of 2.85 mA·cm-2 at 0 V vs. the reversible hydrogen electrode (RHE) without use of any co-catalysts. This represents one of the best results from a CdS-based photoelectrochemical (PEC) cell. Both the multidimensional nature and type Ⅱ band alignment of the 1D/2D CdS/CdIn2S4 heterostructure contribute to the enhanced photocatalytic and photoelectrochemical activity. The present work not only provides a new strategy for designing multidimensional 1D/2D heterostructures, but also documents the development of highly efficient energy conversion catalysts.

File
nr-10-8-2699_ESM.pdf (6.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2016
Revised: 01 January 2017
Accepted: 04 January 2017
Published: 29 April 2017
Issue date: August 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51372173, 21673160, and 51420105002), Natural Science Foundation of Zhejiang for Distinguished Young Scholars (No. LR16B010002), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201409SIC), and startup funds of Syracuse University.

Return