In this work, we have fabricated a single layer graphene spin transistor on SiO2/Si with a semiconducting tri-layer MoS2 as the tunneling barrier between the ferromagnetic electrodes and the graphene channel. The spin transport in this parallel heterostructure were investigated in detail. The spin switch signal was controlled by tuning the conductivity of MoS2 with different gate voltages. When MoS2 was turned off under negative back gate voltage, the spin switch signal was clearly obtained, whereas it disappeared when MoS2 was conductive under positive back gate bias. This spin transistor showed on, subthreshold and off states when back gate voltage changed from negative to positive. This work exploited a new possibility of semiconducting 2D materials as the tunneling barrier of spin valves.
- Article type
- Year
- Co-author
The efficient near-infrared light detection of the MoTe2/germanium (Ge) heterojunction has been demonstrated. The fabricated MoTe2/Ge van der Waals heterojunction shows excellent photoresponse performances under the illumination of a 915 nm laser. The photoresponsivity and specific detectivity can reach to 12,460 A/W and 3.3 × 1012 Jones, respectively. And the photoresponse time is 5 ms. However, the MoTe2/Ge heterojunction suffers from a large reverse current at dark due to the low barrier between MoTe2 and Ge. Therefore, to reduce the reverse current, an ultrathin GeO2 layer deposited by ozone oxidation has been introduced to the MoTe2/Ge heterojunction. The reverse current of the MoTe2/GeO2/Ge heterojunction at dark was suppressed from 0.44 μA/μm2 to 0.03 nA/μm2, being reduced by more than four orders of magnitude. The MoTe2/Ge heterojunction with the GeO2 layer also exhibits good photoresponse performances, with a high responsivity of 15.6 A/W, short response time of 5 ms, and good specific detectivity of 4.86 × 1011 Jones. These properties suggest that MoTe2/Ge heterostructure is one of the promising structures for the development of high performance near-infrared photodetectors.
A novel infrared light emitting diode (LED) based on an ordered p-n heterojunction built of a p-Si1–xGex alloy and n-ZnO nanowires has been developed. The electroluminescence (EL) emission of this LED is in the infrared range, which is dominated by the band gap of Si1–xGex alloy. The EL wavelength variation of the LED shows a red shift, which increases with increasing mole fraction of Ge. With Ge mole fractions of 0.18, 0.23 and 0.29, the average EL wavelengths are around 1, 144, 1, 162 and 1, 185 nm, respectively. The observed magnitudes of the red shifts are consistent with theoretical calculations. Therefore, by modulating the mole fraction of Ge in the Si1–xGex alloy, we can adjust the band gap of the SiGe film and tune the emission wavelength of the fabricated LED. Such an IR LED device may have great potential applications in optical communication, environmental monitoring and biological and medical analyses.