Sort:
Research Article Issue
Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second
Nano Research 2015, 8 (4): 1098-1107
Published: 29 October 2014
Downloads:12

We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10-17 W (~85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 1020 cm·Hz1/2·W-1 and 6.6 × 105, respectively. It is found that the presence of the trapping states at the p-ZnS NR/ITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developing high-performance optoelectronic devices in the future.

total 1