Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10-17 W (~85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 1020 cm·Hz1/2·W-1 and 6.6 × 105, respectively. It is found that the presence of the trapping states at the p-ZnS NR/ITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developing high-performance optoelectronic devices in the future.
Monroy, E.; Omnès, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51.
Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705.
Katz, J. Detectors for optical communications: A review. TDA Progress Report 1983, 42–75, 21–38.
Bai, X.; Liu, H. -D.; McIntosh, D. C.; Campbell, J. C. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J. Quantum Elec. 2009, 45, 300–303.
Yan, F.; Xin, X. B.; Aslam, S.; Zhao, Y. G.; Franz, D.; Zhao, J. H.; Weiner, M. 4H-SiC UV photo detectors with large area and very high specific detectivity. IEEE J. Quantum Elec. 2004, 40, 1315–1320.
Zhu, H.; Chen, X.; Cai, J.; Wu, Z. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid State Elec. 2009, 53, 7–10.
Verevkin, A.; Zhang, J.; Sobolewski, R.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 2002, 80, 4687–4689.
Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; et al. Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors. Appl. Phys. Lett. 2004, 84, 5338–5340.
Xu, S.; Wang, Z. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.
Huang, K.; Zhang, Q.; Yang, F.; He, D. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.
Luo, L. B.; Liang, F. X.; Jie, J. S. Sn-catalyzed synthesis of SnO2 nanowires and their optoelectronic characteristics. Nanotechnology 2011, 22, 485701.
Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Chen, D.; Shen, G. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.
Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.
Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M. T.; Messing, M. E.; Asoli, D.; Graczyk, M.; Witzigmann, B.; Capasso, F.; Samuelson, L.; et al. Study of photocurrent generation in InP nanowire-based p-i-n photodetectors. Nano Res. 2014, 7, 1–9.
Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.
Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.
Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.
Memis, O. G.; Katsnelson, A.; Kong, S. -C.; Mohseni, H.; Yan, M.; Zhang, S.; Hossain, T.; Jin, N.; Adesida, I. A photon detector with very high gain at low bias and at room temperature. Appl. Phys. Lett. 2007, 91, 171112.
Memis, O. G.; Kohoutek, J.; Wu, W.; Gelfand, R. M.; Mohseni, H. Signal-to-noise performance of a short-wave infrared nanoinjection imager. Opt. Lett. 2010, 35, 2699–2701.
Nie, B.; Hu, J. G.; Luo, L. B.; Xie, C.; Zeng, L. H.; Lv, P.; Li, F. Z.; Jie, J. S.; Feng, M.; Wu, C. Y.; et al.; Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 2013, 9, 2872–2879.
González-Posada, F.; Songmuang, R.; Den Hertog, M.; Monroy, E. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett. 2012, 2, 172–176.
Yu, Y.; Jie, J.; Jiang, P.; Wang, L.; Wu, C.; Peng, Q.; Zhang, X.; Wang, Z.; Xie, C.; Wu, D.; et al. High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. J. Mater. Chem. 2011, 21, 12632–12638.
Jiang, P.; Jie, J.; Yu, Y.; Wang, Z.; Xie, C.; Zhang, X.; Wu, C.; Wang, L.; Zhu, Z.; Luo, L. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors J. Mater. Chem. 2012, 22, 6856–6561.
Chen, R. S.; Chen, H. Y.; Lu, C. Y.; Chen, K. H.; Chen, C. P.; Chen, L. C.; Yang, Y. J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106.
Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005, 5, 981–984.
Jian, W.; Zhuang, J.; Zhang, D.; Dai, J.; Yang, W.; Bai, Y. Synthesis of highly luminescent and photostable ZnS: Ag nanocrystals under microwave irradiation. Mater. Chem. Phys. 2006, 99, 494–497.
Yu, Y.; Zeng, L.; Jiang, Y.; Jie, J. Ultralow contact resistivity of Cu/Au with p-type ZnS nanoribbons for nanoelectronic applications. IEEE Elec. Dev. Lett. 2013, 34, 810–812.
Soylu, M.; Yakuphanoglu, F. Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films 2011, 519, 1950–1954.
Tuğluoğlu, N.; Yakuphanoglu, F.; Karadeniz, S. Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance-frequency characteristics. Phys. B 2007, 393, 56–60.
Okutan, M.; Basaran, E.; Yakuphanoglu, F. Electronic and interface state density distribution properties of Ag/p-Si Schottky diode. Appl. Surf. Sci. 2005, 252, 1966–1973.
Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.
Ghosh, T.; Basak, D. Nonvolatile memory effect in a Au/Cu-ZnO/p-Si type of metal-insulator-semiconductor structure. IEEE Elec. Dev. Lett. 2011, 32, 1746–1748.
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices. Wiley-Interscience: New Jersey, 2007.
Schroder, D. K. Semiconductor Material and Device Characterization. John Wiley & Sons, Inc. : New Jersey, 2006.
Katz, O.; Garber, V.; Meyler, B.; Bahir, G.; Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2001, 79, 1417–1419.
Katz, O.; Bahir, G.; Salzman, J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2004, 84, 4092–4094.