Journal Home > Volume 8 , Issue 4

We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10-17 W (~85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 1020 cm·Hz1/2·W-1 and 6.6 × 105, respectively. It is found that the presence of the trapping states at the p-ZnS NR/ITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developing high-performance optoelectronic devices in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second

Show Author's information Yong-Qiang Yu1Lin-Bao Luo1( )Ming-Zheng Wang1Bo Wang1Long-Hui Zeng1Chun-Yan Wu1Jian-Sheng Jie2( )Jian-Wei Liu1Li Wang1Shu-Hong Yu3( )
School of Electronic Science and Applied PhysicsAnhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of TechnologyHefei, Anhui230009China
Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhou, Jiangsu215123China
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China

Abstract

We present an ultrasensitive ultraviolet (UV) detector based on a p-type ZnS nanoribbon (NR)/indium tin oxide (ITO) Schottky barrier diode (SBD). The device exhibits a pseudo-photovoltaic behavior which can allow the SBD to detect UV light irradiation with incident power of 6 × 10-17 W (~85 photons/s on the NR) at room temperature, with excellent reproducibility and stability. The corresponding detectivity and photoconductive gain are calculated to be 3.1 × 1020 cm·Hz1/2·W-1 and 6.6 × 105, respectively. It is found that the presence of the trapping states at the p-ZnS NR/ITO interface plays a crucial role in determining the ultrahigh sensitivity of this nanoSBDs. Based on our theoretical calculation, even ultra-low photon fluxes on the order of several tens of photons could induce a significant change in interface potential and consequently cause a large photocurrent variation. The present study provides new opportunities for developing high-performance optoelectronic devices in the future.

Keywords: detectivity, optoelectronic device, Ⅱ-Ⅵ group, Schottky barrier diode, interfacial states

References(36)

1

Monroy, E.; Omnès, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51.

2

Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 2009, 3, 696–705.

3

Katz, J. Detectors for optical communications: A review. TDA Progress Report 1983, 42–75, 21–38.

4

Bai, X.; Liu, H. -D.; McIntosh, D. C.; Campbell, J. C. High-detectivity and high-single-photon-detection-efficiency 4H-SiC avalanche photodiodes. IEEE J. Quantum Elec. 2009, 45, 300–303.

5

Yan, F.; Xin, X. B.; Aslam, S.; Zhao, Y. G.; Franz, D.; Zhao, J. H.; Weiner, M. 4H-SiC UV photo detectors with large area and very high specific detectivity. IEEE J. Quantum Elec. 2004, 40, 1315–1320.

6

Zhu, H.; Chen, X.; Cai, J.; Wu, Z. 4H-SiC ultraviolet avalanche photodetectors with low breakdown voltage and high gain. Solid State Elec. 2009, 53, 7–10.

7

Verevkin, A.; Zhang, J.; Sobolewski, R.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A. Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range. Appl. Phys. Lett. 2002, 80, 4687–4689.

8

Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; et al. Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors. Appl. Phys. Lett. 2004, 84, 5338–5340.

9

Xu, S.; Wang, Z. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013–1098.

10

Huang, K.; Zhang, Q.; Yang, F.; He, D. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281–287.

11

Luo, L. B.; Liang, F. X.; Jie, J. S. Sn-catalyzed synthesis of SnO2 nanowires and their optoelectronic characteristics. Nanotechnology 2011, 22, 485701.

12

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X.; Chen, D.; Shen, G. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775–783.

13

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160.

14

Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M. T.; Messing, M. E.; Asoli, D.; Graczyk, M.; Witzigmann, B.; Capasso, F.; Samuelson, L.; et al. Study of photocurrent generation in InP nanowire-based p-i-n photodetectors. Nano Res. 2014, 7, 1–9.

15

Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

16

Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.

17

Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photonics 2009, 3, 569–576.

18

Memis, O. G.; Katsnelson, A.; Kong, S. -C.; Mohseni, H.; Yan, M.; Zhang, S.; Hossain, T.; Jin, N.; Adesida, I. A photon detector with very high gain at low bias and at room temperature. Appl. Phys. Lett. 2007, 91, 171112.

19

Memis, O. G.; Kohoutek, J.; Wu, W.; Gelfand, R. M.; Mohseni, H. Signal-to-noise performance of a short-wave infrared nanoinjection imager. Opt. Lett. 2010, 35, 2699–2701.

20

Nie, B.; Hu, J. G.; Luo, L. B.; Xie, C.; Zeng, L. H.; Lv, P.; Li, F. Z.; Jie, J. S.; Feng, M.; Wu, C. Y.; et al.; Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small 2013, 9, 2872–2879.

21

González-Posada, F.; Songmuang, R.; Den Hertog, M.; Monroy, E. Room-temperature photodetection dynamics of single GaN nanowires. Nano Lett. 2012, 2, 172–176.

22

Yu, Y.; Jie, J.; Jiang, P.; Wang, L.; Wu, C.; Peng, Q.; Zhang, X.; Wang, Z.; Xie, C.; Wu, D.; et al. High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. J. Mater. Chem. 2011, 21, 12632–12638.

23

Jiang, P.; Jie, J.; Yu, Y.; Wang, Z.; Xie, C.; Zhang, X.; Wu, C.; Wang, L.; Zhu, Z.; Luo, L. Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors J. Mater. Chem. 2012, 22, 6856–6561.

24

Chen, R. S.; Chen, H. Y.; Lu, C. Y.; Chen, K. H.; Chen, C. P.; Chen, L. C.; Yang, Y. J. Ultrahigh photocurrent gain in m-axial GaN nanowires. Appl. Phys. Lett. 2007, 91, 223106.

25

Calarco, R.; Marso, M.; Richter, T.; Aykanat, A. I.; Meijers, R.; Hart, A. V.; Stoica, T.; Lüth, H. Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett. 2005, 5, 981–984.

26

Jian, W.; Zhuang, J.; Zhang, D.; Dai, J.; Yang, W.; Bai, Y. Synthesis of highly luminescent and photostable ZnS: Ag nanocrystals under microwave irradiation. Mater. Chem. Phys. 2006, 99, 494–497.

27

Yu, Y.; Zeng, L.; Jiang, Y.; Jie, J. Ultralow contact resistivity of Cu/Au with p-type ZnS nanoribbons for nanoelectronic applications. IEEE Elec. Dev. Lett. 2013, 34, 810–812.

28

Soylu, M.; Yakuphanoglu, F. Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films 2011, 519, 1950–1954.

29

Tuğluoğlu, N.; Yakuphanoglu, F.; Karadeniz, S. Determination of the interface state density of the In/p-Si Schottky diode by conductance and capacitance-frequency characteristics. Phys. B 2007, 393, 56–60.

30

Okutan, M.; Basaran, E.; Yakuphanoglu, F. Electronic and interface state density distribution properties of Ag/p-Si Schottky diode. Appl. Surf. Sci. 2005, 252, 1966–1973.

31

Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

32

Ghosh, T.; Basak, D. Nonvolatile memory effect in a Au/Cu-ZnO/p-Si type of metal-insulator-semiconductor structure. IEEE Elec. Dev. Lett. 2011, 32, 1746–1748.

33

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices. Wiley-Interscience: New Jersey, 2007.

DOI
34

Schroder, D. K. Semiconductor Material and Device Characterization. John Wiley & Sons, Inc. : New Jersey, 2006.

35

Katz, O.; Garber, V.; Meyler, B.; Bahir, G.; Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2001, 79, 1417–1419.

36

Katz, O.; Bahir, G.; Salzman, J. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 2004, 84, 4092–4094.

File
12274_2014_587_MOESM1_ESM.pdf (921.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2014
Revised: 12 September 2014
Accepted: 16 September 2014
Published: 29 October 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors acknowledge the funding support from the National Basic Research Program of China (Grants Nos. 2013CB933900, 2014CB931800, and 2010CB934700), the Major Research Plan of the National Natural Science Foundation of China (Grants Nos. 91027021 and 91233110), the National High Technology Research and Development Program of China (Grant No. 2007AA03Z301), the National Natural Science Foundation of China (Grants Nos. 91022032, 21101051, 61106010, 51172151, 91227103, and 21431006), and the Natural Science Foundation of Anhui Province (Grant No. J2014AKZR0059).

Return