Publications
Sort:
Research Article Issue
Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes
Nano Research 2015, 8 (4): 1128-1138
Published: 07 November 2014
Downloads:19

Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3 2+ and Ru(phen)3 2+, with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.

Open Access Research Article Issue
Carbon Nanotubes Inhibit the Hemolytic Activity of the Pore-Forming Toxin Pyolysin
Nano Research 2009, 2 (7): 517-525
Published: 01 July 2009
Downloads:8

Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery. We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes (SWNTs), which were previously prepared for drug delivery purposes, and explored their potential for detoxification in the bloodstream. Our investigations of the binding of SWNTs to a pore-forming toxin pyolysin show that SWNTs prevented toxin-induced pore formation in the cell membrane of human red blood cells. Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin. According to Raman spectroscopy data, human red blood cells, unlike HeLa cells, did not internalize oxidized SWNTs. Molecular modeling and circular dichroism measurements were used to predict the 3-D structure of pyolysin (domain 4) and its interaction with SWNTs. The tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin, a common construct in a large family of cholesterol-dependent cytolysins, shows high affinity for SWNTs.

total 2