Journal Home > Volume 8 , Issue 4

Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3 2+ and Ru(phen)3 2+, with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Diffusive transport of two charge equivalent and structurally similar ruthenium complex ions through graphene oxide membranes

Show Author's information Michael Coleman1Xiaowu (Shirley) Tang1,2( )
Department of Chemistry200 University Ave West, Waterloo, Ontario, N2L 3G1Canada
Waterloo Institute for Nanotechnology200 University Ave West, Waterloo, Ontario N2L 3G1Canada

Abstract

Here, we report a study of ion transport across graphene oxide (GO) membranes of various thicknesses, made by vacuum filtration of GO aqueous solutions. The diffusive transport rates of two charge-equivalent ruthenium complex ions Ru(bpy)3 2+ and Ru(phen)3 2+, with a sub-angstrom size difference, are distinguishable through GO membranes and their ratio can be a unique tool for probing the transport-relevant pore structures. Pore and slit-dominant hindered diffusion models are presented and correlated to experimental results. Our analysis suggests that ion transport is mostly facilitated by large pores (larger than 1.75 nm in diameter) in the relatively thin GO membranes, while slits formed by GO stacking (less than 1.42 nm in width) become dominant only in thick membranes. By grafting PEG molecules to the lateral plane of GO sheets, membranes with enlarged interlayer spacing were engineered, which showed drastically increased ion transport rates and lower distinction among the two ruthenium complex ions, consistent with the prediction by the slit-dominant steric hindered diffusion model.

Keywords: graphene oxide, ion transport, hindered diffusion, nanofluidics

References(45)

1

Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Xu, Z. P.; Zhu, H. W. Selective ion penetration of graphene oxide membranes. ACS Nano 2013, 7, 428–437.

2

Hu, M.; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

3

Schneider, G. F.; Kowalczyk, S. W.; Calado, V. E.; Pandraud, G.; Zandbergen, H. W.; Vandersypen, L. M. K.; Dekker, C. DNA translocation through graphene nanopores. Nano. Lett. 2010, 10, 3163–3167.

4

Wells, D.; Belkin, M.; Comer, J.; Aksimentiev, A. Assessing graphene nanopores for sequencing DNA. Nano. Lett. 2012, 12, 4117–4123.

5

Ignat, M.; Van Oers, C.; Vernimmen, J.; Mertens, M.; Potgieter-Vermaak, S.; Meynen, V.; Popovici, E.; Cool, P. Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template. Carbon 2010, 48, 1609–1618.

6

Han, S.; Hyeon, T. Novel silica-sol mediated synthesis of high surface area porous carbons. Carbon 1999, 37, 1645–1647.

7

Ryoo, R.; Joo, S.; Kruk, M.; Jaroniec, M. Ordered mesoporous carbons. Adv. Mater. 2001, 13, 677–681.

8

Bagshaw, S.; Prouzet, E.; Pinnavaia, T. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 1995, 269, 1242–1244.

9

Mi, B. X. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343, 740–742.

10

Georgakilas, V.; Otyepka, M.; Bourlinos, A.; Chandra, V.; Kim, N.; Kemp, K.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.

11

Girit, C. Ö.; Meyer, J.; Erni, R.; Rossell, M.; Kisielowski, C.; Yang, L.; Park, C. -H.; Crommie, M.; Cohen, M.; Louie, S.; et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.

12

Koenig, S. P.; Wang, L. D.; Pellegrino, J.; Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 2012, 7, 728–732.

13

O'Hern, S.; Boutilier, M.; Idrobo, J. -C.; Song, Y.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 2014, 14, 1234–1241.

14

Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

15

Gómez-Navarro, C.; Meyer, J.; Sundaram, R.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.

16

Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

17

Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

18

Guo, W.; Cheng, C.; Wu, Y. Z.; Jiang, Y. N.; Gao, J.; Li, D.; Jiang, L. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv. Mater. 2013, 25, 6064–6068.

19

Joshi, R. K.; Carbone, P; Wang, F. C.; Kravets, V. G.; Su, Y.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.; Nair, R. R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 2014, 343, 752–754.

20

Han, Y.; Xu, Z.; Chao, G. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23, 3693–3700.

21

Huang, H. B.; Song, Z. G.; Wei, N.; Shi, L.; Mao, Y. Y.; Ying, Y. L.; Sun, L. W.; Xu, Z. P.; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.

22

Huang, H. B.; Mao, Y. Y.; Liu, Y. L.; Sun, L. W.; Peng, X. S. Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes. Chem. Commun. 2013, 49, 5963–5965.

23

Sun, P. Z.; Zheng, F.; Zhu, M.; Song, Z. G.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; Little, R.; Xu, Z. P.; Zhu, H. W. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. ACS Nano 2014, 8, 850–859.

24

Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335, 442–444.

25

Wei, N.; Peng, X. S.; Xu, Z. P. Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 2014, 6, 5877–5883.

26

Maloney, D. J.; MacDonnell, F. M. Λ-tris(1, 10-phenanthroline-N, N′)-ruthenium(Ⅱ) bis(hexafluorophosphate)-acetonitrile-diethyl ether (1/1/0.5). Acta Cryst C. 1997, 53, 705–707.

27

Rillema, D. P.; Jones, D. S. Structure of tris(2, 2′-bipyridyl) ruthenium(Ⅱ) hexafluorophosphate, [Ru(bipy)3][PF6]2; X-ray crystallographic determination. J. Chem. Soc. Chem. Commun. 1979, 849–851.

28

Moret, M. -E.; Tavernelli, I.; Rothlisberger, U. A Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J. Phys Chem. B. 2009, 113, 7737–7744.

29

Szymczak, J. J.; Hofmann, F. D.; Meuwly, M. Structure and dynamics of solvent shells around photoexcited metal complexes. Phys. Chem. Chem. Phys. 2013, 15, 6268–6277.

30

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

31

Kovtyukhova, N.; Ollivier, P.; Martin, B.; Mallouk, T.; Chizhik, S.; Buzaneva, E.; Gorchinskiy, A. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778.

32

Gao, X. G.; Tang, X. W. Effective reduction of graphene oxide thin films by a fluorinating agent: Diethylaminosulfur trifluoride. Carbon 2014, 76, 133–140.

33

Majumder, M.; Chopra, N.; Hinds, B. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 2005, 127, 9062–9070.

34

Wilke, C.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270.

35

Martin, C. R.; Rubinstein, I.; Bard, A. J. The heterogeneous rate constant for the Ru(bpy)3 3+/2+ couple at a glassy carbon electrode in aqueous solution. J. Electroanal. Chem. 1983, 151, 267–271.

36

O'Hern, S. C.; Stewart, C. A.; Boutilier, M. S. H.; Idrobo, J. -C.; Bhaviripudi, S.; Das, S. K.; Kong, J.; Laoui, T.; Atieh, M.; Karnik, R. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 2012, 6, 10130–10138.

37

Boutilier, M. S. H.; Sun, C. Z.; O'Hern, S. C.; Au, H.; Hadjiconstantinou, N. G.; Karnik, R. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 2014, 8, 841–849.

38

Wei, N.; Peng, X. S.; Xu, Z. P. Breakdown of fast water transport in graphene oxides. Phys. Rev. E 2014, 89, 012113.

39

Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987, 33, 1409–1425.

40

Dechadilok, P.; Deen, W. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 2006, 45, 6953–6959.

41

Silva, V.; Prádanos, P.; Palacio, L.; Hernández, A. Alternative pore hindrance factors: What one should be used for nanofiltration modelization? Desalination 2009, 245, 606–613.

42

Bungay, P. M.; Brenner, H. The motion of a closely-fitting sphere in a fluid-filled tube. Int. J. Multiph. Flow 1973, 1, 25–56.

43

Chun, M. -S.; Phillips, R. J. Electrostatic partitioning in slit pores by Gibbs ensemble Monte Carlo simulation. AIChE J. 1997, 43, 1194–1203.

44

Dechadilok, P.; Deen, W. M. Electrostatic and electrokinetic effects on hindered diffusion in pores. J. Membr. Sci. 2009, 336, 7–16.

45

Chen, S. B. Electrostatic interaction and hindered diffusion of ion-penetrable spheres in a slit pore. J. Colloid Interface Sci. 1998, 205, 354–364.

File
12274_2014_593_MOESM1_ESM.pdf (863.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2014
Revised: 16 September 2014
Accepted: 19 September 2014
Published: 07 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This research is financially supported by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Return