Publications
Sort:
Research Article Issue
Hierarchical WO3 Flowers Comprising Porous Single-Crystalline Nanoplates Show Enhanced Lithium Storage and Photocatalysis
Nano Research 2012, 5 (11): 826-832
Published: 19 October 2012
Downloads:39

We report a morphology-conserved transformation approach to successfully synthesize a unique porous WO3 nanoplate assembly, which is hierarchically structured like a flower, from an ammonium tungsten peroxo oxalate containing precursor. The resulting novel, multiple length scale architecture of WO3 and its formation process have been investigated by a series of microscopic, spectroscopic and other techniques. A possible growth mechanism was proposed on the basis of the experiments. When tested as a lithium ion battery anode, the porous WO3 nanoplate assembly showed high rate capacity and high cyclability. Not least, it has also exhibited high photocatalytic activities under visible light irradiation.

Research Article Issue
A Composite Material of Uniformly Dispersed Sulfur on Reduced Graphene Oxide: Aqueous One-Pot Synthesis, Characterization and Excellent Performance as the Cathode in Rechargeable Lithium-Sulfur Batteries
Nano Research 2012, 5 (10): 726-738
Published: 22 September 2012
Downloads:12

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a simple aqueous one-pot synthesis method, in which the formation of the composite is achieved through the simultaneous oxidation of sulfide and reduction of graphene oxide. The synthesis process has been tracked ex situ by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy, which both confirm that the majority of graphene oxide has been reduced during the synthesis reaction. The sulfur contents in the SGC, determined by thermogravimetry and elementary analysis, have been adjusted in the range from 20.9 to 72.5 wt.%. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images reveal that most of the sulfur is uniformly dispersed on the reduced graphene oxide sheets, for which no sulfur in particulate form could be observed. The SGC materials have been tested as the cathode of rechargeable lithium-sulfur (Li-S) batteries, and demonstrated a high reversible capacity and good cycleability. The SGC-63.6%S can deliver a reversible capacity as high as 804 mA·h/g after 80 cycles of charge/discharge at a current density of 312 mA/g (ca. 0.186 C), and 440 mA·h/g after 500 cycles at 1250 mA/g (ca. 0.75 C).

total 2